МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 9900— 2013

СТЕКЛО И ИЗДЕЛИЯ ИЗ НЕГО

МЕТОДЫ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ

Определение модуля упругости при поперечном статическом изгибе

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 – 92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 – 2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом «Институт стекла» (ОАО «Институт стекла»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 44 от 14 ноября 2013 г.)

За принятие проголосовали:

Краткое наименование	Код страны по	Сокращенное наименование на-
страны по МК (ИСО 3166)	MK (ИСО 3166)	ционального органа по стандарти-
004–97	004–97	зации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Кыргызстан	KZ	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

⁴ Приказом Федерального агентства по техническому регулированию и метро-

логии от 22 ноября 2013 г. № 1986-ст межгосударственный стандарт ГОСТ 9900—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

5 B3AMEH FOCT 9900-85

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТЕКЛО И ИЗДЕЛИЯ ИЗ НЕГО

Методы определения механических свойств

Определение модуля упругости при поперечном статическом изгибе

Glass and glass products

Methods for determination of mechanical properties

Determination of elasticity modulus at cross static bending

Дата введения – 2015-01-01

1 Область применения

Настоящий стандарт устанавливает методы определения модуля упругости при поперечном статическом изгибе и распространяется на стекло, изделия из него и стеклокристаллические материалы (стекло листовое, закаленное, термоупрочненное, стекло с покрытием, многослойное стекло, ситаллы, шлакоситаллы и т.д.) (далее – стекло):

- метод А определение относительной деформации растяжения при действии на образец двух сил (четырехточечный изгиб);
- метод Б определение стрелы прогиба при действии на образец одной силы (трехточечный изгиб).

Метод Б применяют при разногласиях в оценке качества стекла неорганического, изделий из него и стеклокристаллических материалов.

Методы, установленные в настоящем стандарте, применяют при проведении исследовательских, лабораторных, контрольных и других видов испытаний.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.004–91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

Издание официальное

FOCT 9900-2013

ГОСТ 12.4.013-85¹⁾ Система стандартов безопасности труда. Очки защитные. Общие технические условия

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 1435–99 Прутки, полосы и мотки из инструментальной нелегированной стали. Общие технические условия

ГОСТ 6507-90 Микрометры. Технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом, следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 модуль упругости: Характеристика стекла, показывающая его способность упруго деформироваться при приложении нагрузки.
- 3.2 упругая деформация: Деформация, исчезающая после прекращения действия нагрузки.

¹³ На территории Российской Федерации действует ГОСТ Р 12.4.230.1-2007.

4 Сущность метода

Метод состоит в определении сопротивляемости стекла растяжению/сжатию при упругой деформации.

5 Условия проведения испытаний

Испытания по определению модуля упругости при поперечном статическом изгибе проводят при:

- температуре (20±5) °С;
- относительной влажности воздуха от 40 % до 70 %.

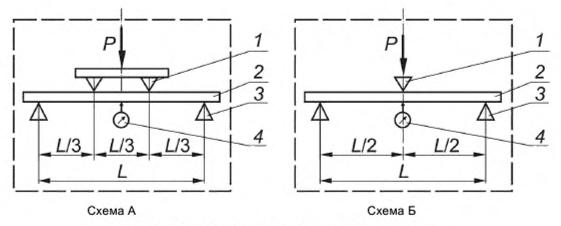
Образцы должны быть выдержаны в условиях проведения испытания не менее 12 ч.

6 Требования безопасности

- 6.1 Требования безопасности при проведении испытаний устанавливают согласно требованиям гигиенических правил, правил по электробезопасности, правил противопожарной безопасности в соответствии с применяемым испытательным оборудованием.
- 6.2 Пожарную безопасность обеспечивают системами предотвращения пожара, противопожарной защиты, организационно-техническими мероприятиями по ГОСТ 12.1.004.
- 6.3 Лица, занятые проведением испытаний, должны быть обеспечены защитными очками по ГОСТ 12.4.013²). В помещении должны быть вода и аптечка с медикаментами для оказания первой помощи при ушибах и порезах.

3

²⁾ На территории Российской Федерации действует ГОСТ Р 12.4.230.1–2007.


7 Испытательное оборудование и средства измерений

7.1 Испытательное оборудование

Испытательная установка с устройствами для фиксирования нагрузки с погрешностью измерения не более 1 % и прогиба образца с погрешностью не более 0,001 мм.

Схема установки для проведения испытаний по методам A и Б показана на рисунке 1:

- схема A для проведения испытания по методу A;
- схема Б для проведения испытания по методу Б.

1 — призмы для передачи изгибающего усилия; 2 — образец;

3 — опорные призмы, 4 — индикатор, Р — нагрузка

Рисунок 1 – Схема установки для определения модуля упругости

Испытательная установка состоит из основных частей:

- устройства для нагружения образца, которое должно быть рассчитано на определенный диапазон нагружения;
 - устройства для передачи изгибающего усилия на образец;
 - устройства измерения нагрузки с погрешностью измерения не более 1,0 %.

Устройство для передачи изгибающего усилия на образец через две призмы (метод А) или одну призму (метод Б) включает две опорные призмы в виде правильных трехгранных призм. Все призмы испытательной установки изготавливают из стали марки У8 по ГОСТ 1435. Призмы для передачи изгибающего усилия (метод А) должны быть качающиеся и обеспечивать самоустановку на прилегание к поверхности образца. Радиус закругления ребра призмы (3±1) мм.

7.2 Средства измерений

Микрометр по ГОСТ 6507 с ценой деления не более 0,01 мм или другие средства измерения с ценой деления не более 0,01 мм.

Штангенциркуль по ГОСТ 166 с ценой деления не более 0,1 мм.

Спирт этиловый ректификованный технический по ГОСТ 18300.

7.3 Испытательное оборудование и средства измерений должны быть поверены, откалиброваны и аттестованы в установленном порядке.

8 Отбор и подготовка образцов

- 8.1 Порядок отбора образцов для проведения испытаний устанавливают в нормативных документах, утвержденных в установленном порядке, на испытываемое стекло, изделия из стекла и стеклокристаллические материалы или в договоре на проведение испытаний.
- 8.2 Образцы для испытаний должны быть плоскими и соответствовать требованиям нормативных документов.
- 8.3 Кромки образцов должны соответствовать требованиям нормативных документов на соответствующий вид продукции.
- 8.4 Для испытаний отбирают количество образцов, указанное в нормативных документах, но не менее 10 образцов, не имеющих пороков внешнего вида, вырезанных из готовых изделий или изготовленных по той же технологии.
- 8.5 Размеры образцов для проведения испытаний согласовываются с заказчиком в зависимости от длины призмы и расстояния между центрами опорных призм используемой установки, при этом:
 - толщина образца соответствует толщине испытываемого стекла;
 - ширина образца не более, чем длина призмы;
 - длина образца не менее чем на 20 мм больше расстояния между центрами

FOCT 9900-2013

опорных призм.

- 8.6 Геометрические размеры образцов проверяют с помощью средств измерений по 7.2 и по методикам, приведенным в нормативных документах на испытываемое стекло.
- 8.7 Перед проведением испытаний образцы должны быть очищены спиртом по ГОСТ 18300 и проверены в соответствии с 8.2.

9 Проведение испытаний

9.1 Метод А

Измеряют расстояние между центрами опорных призм с погрешностью не более 1 мм и расстояние между призмами для передачи изгибающего усилия.

Измеряют геометрические размеры образцов.

Образец располагают на опорных призмах в соответствии с рисунком 1 (схема A).

Последовательно нагружают, а затем разгружают образец тремя — пятью ступенями по (49,0±0,1) Н и записывают показание индикатора для каждой ступени нагружения и разгружения.

Измеряют прогиб с погрешностью не более 0,001 мм.

Разность показаний индикатора между одинаковыми ступенями нагружения и разгружения не должна превышать 3 %. При получении неудовлетворительных результатов испытание проводят на том же образце повторно. Если при испытании образцы разрушаются, то уменьшают нагрузку так, чтобы напряжение в образце не превышало половины предела прочности материала.

9.2 Метод Б

Образец помещают в устройство для передачи изгибающего усилия в соответствии с рисунком 1 (схема Б).

Нагружают, а затем разгружают образец тремя ступенями по (49,0±0,1) Н и записывают показание индикатора для каждой ступени нагружения и разгружения. Измеряют прогиб с погрешностью не более 0,001 мм.

10 Обработка результатов испытаний

10.1 Метод А

Модуль упругости Е, ГПа, вычисляют по формуле

$$E = \frac{1}{36g10^3} g \frac{PL^3}{b_S 3_f} \,, \tag{1}$$

где P – нагрузка, соответствующая определенному уровню нагружения (одной ступени нагружения либо кратному их числу), H;

L – расстояние между центрами опорных призм, мм;

b — ширина образца, мм;

s — толщина образца, мм;

f— стрела прогиба образца, соответствующая нагрузке P, мм.

10.2 Метод Б

Модуль упругости Е, Гпа, вычисляют по формуле

$$E = \frac{1}{4g!0^3} \frac{PL^3}{bfs^3}.$$
 (2)

где P — нагрузка, соответствующая определенному уровню нагружения (одной ступени нагружения либо кратному их числу), H;

L – расстояние между центрами опорных призм, мм;

b — ширина образца, мм;

f — стрела прогиба образца, соответствующая нагрузке P, мм;

s — толщина образца, мм.

10.3 За результат испытания принимают среднее арифметическое модуля упругости образцов, вычисленное по формуле

$$E = \frac{1}{n} \sum_{i=1}^{n} E_i$$
 (3)

10.4 Вычисляют среднее квадратическое отклонение по формуле

$$\delta = \sqrt{\frac{\sum_{j=1}^{n} \left(E_{j} - E_{cp}^{2}\right)}{n}}.$$
 (4)

10.5 Результат измеренной величины модуля упругости каждого образца не должен отличаться от среднего арифметического значения модуля упругости на величину среднего квадратического отклонения. Допускается отклонение модуля упругости не более чем у двух образцов.

11 Оформление результатов испытаний

Результаты испытаний оформляют протоколом, в котором указывают:

- наименование испытательного центра (лаборатории) и номер аттестата аккредитации, его юридический адрес и контактный телефон;
 - наименование, юридический адрес организации заказчика испытаний;
- наименование, юридический адрес организации изготовителя образцов (если он известен);
- наименование продукции, маркировку образцов и нормативный документ на объект испытаний;
 - обозначение настоящего стандарта;
 - сведения об отборе образцов;
 - описание образцов;
 - размеры образцов (мм),
 - результат каждого уровня нагружения;
- результаты испытаний (среднее арифметическое значение модуля упругости и среднее квадратическое отклонение);
 - дату проведения испытаний;
- подписи руководителя испытательного центра (лаборатории) и испытателя, печать испытательного центра (лаборатории).

УДК 666.157:006.354

MKC 81.040.01

Ключевые слова: модуль упругости, нагрузка, стрела прогиба, отбор образцов, среднее квадратическое отклонение

Подписано в печать 30.04.2014.

Формат 60x84¹/₈.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru