

РЭСПУБЛІКА БЕЛАРУСЬ

Міністэрства аховы здароўя

ГАЛОЎНЫ ДЗЯРЖАЎНЫ САНІТАРНЫ ЎРАЧ РЭСПУБЛІКІ БЕЛАРУСЬ

220048, г. Мінск, вул. Мяснікова, 39 факс 220-64-59 E-mail:mrimzha@belcmt.by Телефон 222-69-97

РЕСПУБЛИКА БЕЛАРУСЬ

Министерство здравоохранения

ГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ РЕСПУБЛИКИ БЕЛАРУСЬ

220048, г. Минск, ул. Мясникова, 39 факс 220-64-59 E-mail:mrimzha@belcmt.by

«31» opmersopa	_200 <u>5</u> r. №
Ha №	

ПОСТАНОВЛЕНИЕ № 159

Об утверждении Сборника Инструкций 4.1.0-12-35 - 2005 — 4.1.0-12-45 - 2005 «Методики выполнения измерений концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения»

В целях исполнения Закона Республики Беларусь «О санитарноэпидемическом благополучии населения» в редакции от 23 мая 2000 года (Национальный реестр правовых актов Республики Беларусь, 2000 г., № 52, 2/172) постановляю:

- 1. Утвердить прилагаемый Сборник инструкций 4.1.10-12-5-2005—4.1.10-12-49 2005 «Методики выполнения измерений концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения» и ввести его в действие на территории Республики Беларусь с 01 марта 2006 г.
- 2. Главным государственным санитарным врачам областей и г. Минска довести данное постановление до сведения всех заинтересованных и установить контроль за его выполнением.

Авишине М.И. Римжа

УТВЕРЖДЕНО Постановление Главного государственного санитарного врача Республики Беларусь 31.10.2005 № 159

Инструкция 4.1.10-12-39-2005 «МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ КОНЦЕНТРАЦИЙ АЦЕТОНА, МЕТАНОЛА, БЕНЗОЛА, ТОЛУОЛА, ЭТИЛБЕНЗОЛА, ПЕНТАНА, О-, М-, П-КСИЛОЛА, ГЕКСАНА, ОКТАНА И ДЕКАНА В ВОДЕ МЕТОДОМ ГАЗОВОЙ ХРОМАТОГРАФИИ»

Настоящая Инструкция устанавливает газохроматографическую методику выполнения измерений концентраций ацетона, метанола, бензола, толуола, этилбензола, пентана, о-, м-, п-ксилола, гексана, октана и декана в воде централизованного хозяйственно-питьевого водоснабжения в диапазоне концентраций $0,005-20~\text{мг/дм}^3$.

1. Характеристика веществ

Физико-химические свойства ацетона, метанола, бензола, толуола, этилбензола, о-, м-, п-ксилола, пентана, гексана, октана и декана представлены в таблице 1 приложения 1, а их гигиенические нормативы — в таблице 2 приложения 1 к настоящей Инструкции.

2. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей \pm 13 % при доверительной вероятности 0,95.

3. Метод измерений

Измерения концентраций анализируемых соединений выполняют методом газовой хроматографии с пламенно-ионизационным детектированием.

Метод основан на извлечении соединений из воды газовой экстракцией при нагревании в замкнутом объеме и последующем анализе равновесной паровой фазы на приборе.

Нижний предел измерения – 0,025 мкг.

Определению не мешают галоген-, азот- и серосодержащие соединения.

4. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы:

4.1. Средства измерений

4.1. Средства измерении	
Хроматограф газовый типа Цвет-530 или 3700 с	
пламенно-ионизационным детектором	
Весы аналитические лабораторные	ΓΟCT 24104-2001
типа ВЛА-200	
Линейка измерительная	ГОСТ 427-75
Лупа измерительная	ГОСТ 225706-83
Меры массы	ΓΟCT 7328-2001
Посуда стеклянная лабораторная	ГОСТ 1770-74Е
Секундомер	ТУ 25-1819.0021-90
Термостат водяной	
Флаконы стеклянные вместимостью 10 см ³ с рези-	ТУ 64-2-10-87
новыми пробками и металлическими держателями,	
ФО-1-10-Б-1	

4.2. Вспомогательные устройства

Хроматографическая колонка из кварцевого стекла длиной 25 м и внутренним диаметром 0,3 мм с жидкой фазой SE-54 (толщина пленки 5 мк)
Дистиллятор
Редуктор водородный
Редуктор кислородный
Электроплитка
ГОСТ 14919-83

4.3. Материалы

Азот сжатый	ГОСТ 9293-74
Водород сжатый	ГОСТ 3022-80
Воздух сжатый	ГОСТ 17433-80
П	

Перчатки хлопчатобумажные

4.4. Реактивы

Ацетон, чистый для анализа (ч.д.а.)	ГОСТ 2768-84
Бензол, химически чистый (далее – х.ч.)	ГОСТ 5955-75
Вода дистиллированная	ГОСТ 6709-72
Гексан, декан, пентан - реагенты для хроматогра-	
фии	

м-Ксилол, х.ч. ТУ 6-09-4556-77

о-Ксилол, х.ч. Метанол, х.ч. Октан, х.ч. Толуол, х.ч. Этилбензол, х.ч. TY 6-09-915-76 FOCT 6995-77 TY 6-09-661-76 FOCT 5789-78 FOCT 9385-77

Могут быть использованы реактивы-эквиваленты, средства измерений и вспомогательные устройства, по точности и квалификации, не уступающие указанным в настоящей Инструкции.

5. Требования безопасности

- 5.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005-88 «Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ГОСТ 12.1.007-76 «Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования».
- 5.2. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019-79 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты» и руководством по эксплуатации прибора.
- 5.3. При отборе проб разогретым шприцем надевают на руки хлопчатобумажные перчатки.

6. Требования к квалификации операторов

К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера-химика с опытом работы на газовом хроматографе, изучивших настоящую Инструкцию.

7. Условия выполнения измерений

Приготовление растворов, подготовку проб к анализу, выполнение измерений на газовом хроматографе согласно ГОСТ 15150-69 «Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды», ГОСТ 27025-86 (СТ СЭВ 804-77) «Реактивы. Общие требования по проведению испытаний», технической документации к прибору и настоящей Инструкции осуществляют при следующих условиях:

температура окружающего воздуха относительная влажность воздуха атмосферное давление

 (20 ± 5) °C; не более 80 % 630-800 мм рт. ст.

8. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовку хроматографической колонки, установление градуировочной характеристики, отбор проб.

8.1. Приготовление растворов

Исходные стандартные растворы № 1 ацетона и метанола для градуировки (c = 0,1 мг/см³). По 25 мг каждого вещества вносят в колбу вместимостью 250 см³, доводят до метки дистиллированной водой и перемешивают. Срок хранения растворов – 1 месяц.

Исходные стандартные растворы № 2 бензола, толуола, этилбензо-ла, о-ксилола, м-, п-ксилола, пентана, гексана, октана и декана для градуировки (с = 0,1 мг/см³). По 10 мг каждого вещества вносят в колбу вместимостью 100 см^3 , доводят до метки метанолом и перемешивают. Срок хранения растворов — 1 месяц.

Рабочие растворы бензола, толуола, этилбензола, о-ксилола, м-, п-ксилола для градуировки (с = 0,01 мг/см³). По 5 см³ исходных стандартных растворов № 2 вносят в колбы вместимостью 50 см³, доводят до метки метанолом и перемешивают. Срок хранения растворов – 1 месяц.

Градуировочные растворы ацетона и метанола готовят в мерных колбах вместимостью $1000~{\rm cm}^3$. Для этого в каждую колбу вносят исходный стандартный раствор № 1 для градуировки в соответствии с таблицей 1 приложения 2 к настоящей Инструкции, доводят объем дистиллированной водой до метки и тщательно перемешивают.

Градуировочные растворы пентана, гексана, октана, декана готовят в мерных колбах вместимостью 1000 см^3 . Для этого в каждую колбу вносят исходный стандартный раствор № 2 в соответствии с таблицей 2 приложения 2 к настоящей Инструкции, доводят объем до метки дистиллированной водой и перемешивают.

Градуировочные растворы бензола, толуола, этилбензола, о-кси-лола, м-, п-ксилолов готовят в мерных колбах вместимостью $1000~{\rm cm}^3$. Для этого в каждую колбу вносят рабочий раствор в соответствии с таблицей 3 приложения 2 к настоящей Инструкции, доводят объем до метки дистиллированной водой.

8.2. Подготовка хроматографической колонки

Хроматографическую капиллярную колонку, не подключая к детектору, кондиционируют в токе газа-носителя с расходом $2,5~{\rm cm}^3$ /минуту при температуре 250^{0} С в течение 18 часов. После охлаждения колонку подключают к детектору, записывают нулевую линию в рабочем режиме. При отсутствии дрейфа нулевой линии колонка готова к работе.

8.3. Установление градировочной характеристики

Градуировочные характеристики устанавливают методом абсолютной градуировки на градуировочных растворах. Они выражают зависимость

площади пика соответствующего вещества на хроматограмме (мм²) от концентрации (мг/дм³) и строятся по 7-ми сериям растворов для градуировки.

По 5 см 3 каждого градуировочного раствора помешают в стеклянный флакон, закрывают резиновой пробкой, прижимают ее металлическим держателем, опускают нижнюю половину флакона в термостат и выдерживают его при температуре 80° C в течение 60 минут. Нагретым до 80° C шприцем отбирают пробу воздуха объемом 2 см 3 над раствором, вводят в испаритель хроматографа и анализируют при следующих условиях:

Температура термостата колонки программируется от 50° C (7 мин в изотермическом режиме) до 150° C со скоростью 5 градусов/минуту.

Температура испари	теля	250° C
Температура детекто		$250^{\circ}\mathrm{C}$
Расход азота через к	олонку	2 см ³ /мин
Расход азота, сбрась	ываемого в испарителе	5 см ³ /мин
Расход азота, поддуг	ваемого в детектор	40 см ³ /мин
Чувствительность ш	калы электрометра	$50 \times 10^{-12} \text{ A}$
Скорость движения	диаграммной ленты	240 мм/час
Время удерживания	метанола	2 мин 06 сек
	ацетона	3 мин 12 сек
	пентана	4 мин 28 сек
	гексана	6 мин 35 сек
	бензола	10 мин 18 сек
	толуола	16 мин 48 сек
	октана	17 мин 10 сек
	этилбензола	20 мин 10 сек
	м-, п-ксилолов	21 мин 22 сек
	декана	27 мин 03 сек
	о-ксилола	28 мин 18 сек

На полученной хроматограмме рассчитывают площади пиков компонентов и по средним значениям из 5-ти серий строят градуировочные характеристики для каждого вещества. Проверку градуировочной характеристики проводят 1 раз в квартал и при изменении условий газохроматографического разделения смеси на колонке.

8.4. Отбор проб

Отбор проб воды производят в соответствии с требованиями СТБ ГОСТ Р 51593-2001 «Вода питьевая. Отбор проб» в бутыли из темного стекла.

9. Выполнение измерений

При выходе прибора на режим 5 см³ пробы воды помещают во флакон и обрабатывают по схеме, аналогичной установлению градуировочных характеристик, затем отбирают над раствором 2 см³ парогазовой (воздушной)

фазы, вводят ее в испаритель хроматографа и включают программирование температурного режима колонок. Анализ проводят в условиях построения градуировочной характеристики (п. 8.3).

На хроматограмме рассчитывают площади пиков.

10. Вычисление результатов измерений Концентрацию анализируемого вещества (мг/дм³) определяют по градуировочной характеристике.

Настоящая Инструкция создана на основе МУК 4.1.650-96 «Методические указания по газохроматографическому определению ацетона, метанола, бензола, толуола, этилбензола, пентана, о-, м-, п-ксилола, гексана, октана и декана в воде» разработанных А.Г. Малышевой (НИИ экологии человека и гигиены окружающей среды, г. Москва) и Е.Е. Сотниковым (Всероссийский центр медицины катастроф МЗ и МП РФ, г. Москва), утвержденных заместителем Главного государственного санитарного врача Российской Федерации 31 октября 1996 г.

Приложение 1 к Инструкции 4.1.10-12-39-2005 «Методика выполнения измерений концентраций ацетона, метанола, бензола, толуола, этилбензола, пентана, о-, м-, пксилола, гексана, октана и декана в воде методом газовой хроматографии»

Таблица 1 Физико-химические свойства веществ

Наименование вещества	Формула	Молек.	Т _{кип.} , ⁰ С	Плот-	Раств	Растворимость, г/л	
				г/см3	вода	этанол	эфир
Ацетон	C ₃ H ₆ O	58,08	56,24	0,791	~	~	~
Метанол	CH ₃ OH	32,04	64,06	0,793	~	~	~
Бензол	C ₆ H ₆	76,00	80,01	0,879	0,72	~	~
Толуол	C ₇ H ₈	92,00	110,00	0,867	0,57	~	~
Этилбензол	$C_6H_5C_2H_5$	106,17	136,15	0,867	0,14	~	~
о-Ксилол	C ₆ H ₄ (CH ₃) ₂	106,17	144,41	0,881	н. р.	л. р.	л. р.
м-, п-Ксилолы	C ₆ H ₄ (CH ₃) ₂	106,17	139,10 138,35	0,864 0,861	н. р.	л. р.	л. р.
Пентан	C ₅ H ₁₂	72,15	36,07	0,626	0,036	~	~
Гексан	C_6H_{14}	86,18	68,70	0,659	0,014	50	p
Октан	C_8H_{18}	114,00	124,00	0,703	0,0015	p.	p.
Декан	$C_{10}H_{22}$	144,00	174,00	0,730	н. р.	~	~

Примечание: ~ смешивается с водой в любых соотношениях; н. р. – нерастворимо; р. - растворимо; л. р. – легко растворимо

Таблица 2 Гигиенические нормативы анализируемых веществ

Наименование вещества	ПДК, мгл	Класс опасности		
Ацетон	-	_		
Метанол	3,0	2		
Бензол	0,01	2		
Толуол	0,5	4		
Этилбензол	0,01	4		
о- Ксилол	0,05	3		
м-, п- Ксилолы	0,05	3		
Пентан	<u>-</u>			
Гексан	<u>-</u>			
Октан				
Декан	-	-		

Приложение 2 к Инструкции 4.1.10-12-39-2005 «Методика выполнения измерений концентраций ацетона, метанола, бензола, толуола, этилбензола, пентана, о-, м-, п-ксилола, гексана, октана и декана в воде методом газовой хроматографии»

Таблица 1 Растворы для установления градуировочной характеристики при определении концентраций ацетона и метанола

Номер раствора	1	2	3	4	5	6	7
Объем исходного стан-	10,0	20,0	30,0	40,0	50,0	100,0	200,0
дартного раствора (c = 0.1 мг/см^3), см ³	ŕ		,	,	,		
Концентрация вещества,	1,0	2,0	3,0	4,0	5,0	10,0	20,0
мг/дм ³							

Таблица 2 Растворы для установления градуировочной характеристики при определении концентраций пентана, гексана, октана, декана в воде

Номер раствора	1	2	3	4	5	6	7
Объем исходного стан-	1,0	5,0	10,0	30,0	60,0	80,0	100,0
дартного раствора (c = 0.1 мг/см^3), см ³							
Концентрация вещества,	0,1	0,5	1,0	3,0	6,0	8,0	10,0
мг/дм ³							

Таблица 3 Растворы для установления градуировочной характеристики при определении концентраций бензола, толуола, этилбензола, о-ксилола, м-, п-ксилолов

Номер раствора	1	2	3	4	5	6	7	8
Объем рабочего	0,5	2,0	5,0	10,0	30,0	60,0	100,0	200,0
раствора (c = 0.01 мг/см ³), см ³								
Концентрация вещества, мг/дм ³	0,005	0,02	0,05	0,1	0,3	0,6	1,0	2,0