4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний

Вынуск 2 Часть 8 МУК 4.1.1240—4.1.1243—03

Издание официальное

Минздрав России Москва • 2005

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г. Г. Онишенко

16 марта 2003 г.

Дата введения: 1 июля 2003 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций феназахина в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1241—03

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения в воздухе рабочей зоны массовой концентрации феназахина в диапазоне 0,05—0,5 мг/м³.

Феназахин – действующее вещество препарата АНТИКЛЕЩ, СК (200 г/л), фирма-производитель ТПК Техноэкспорт, Россия.

4-[2-(4-трет-бутилфенил)этокси]хиназолин (IUPAC)

Эмпирическая формула: С20H22N2O.

Молекулярная масса: 306,4.

Белое кристаллическое вещество без запаха, либо с легким органическим запахом. Температура плавления 77,5—80 °C. Давление паров при 25 °C: $3,4\times10^{-3}$ мПа. Растворимость в органических растворителях при 25 °C (г/дм³): хлороформ — более 500, толуол — 500, ацетон — 400, метанол, изопропанол — 50, ацетонитрил, гексан — 33. Растворимость в воде при 20 °C — 0,22 мг/дм³. Коэффициент распределения н-октанол — вода: K_{OW} logP = 5,51. Стабильность в водных растворах при действии солнечного света (DT_{50}) — 15 дней (рН 7, 25 °C).

Агрегатное состояние в воздухе рабочей зоны – аэрозоль.

Область применения препарата. Феназахин рекомендуется к применению в качестве акарицида против паутинных и галлообразующих клещей на яблоне, груше и винограде в личных подсобных хозяйствах.

Ориентировочно безопасный уровень воздействия (ОБУВ) в воздухе рабочей зоны $-0.3~{\rm Mr/m}^3$.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью (δ) , не превышающей \pm 15,1 %, при доверительной вероятности 0,95.

2. Метод измерения

Измерения концентраций феназахина выполняют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым детектором.

Концентрирование феназахина из воздуха осуществляют на бумажные фильтры «синяя лента», экстракцию с фильтра проводят ацетоном.

Нижний предел измерения в анализируемом объеме пробы – 1—2,5 нг.

Определению не мешают компоненты препаративной формы, а также пестициды, применяемые при выращивании яблони, груши, винограда.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Жидкостный хроматограф Perkin-Elmer	№ Госреестра 15945—97
(США) с ультрафиолетовым детектором	
Жидкостной хроматограф Милихром	ТУ 25-7405.0009—89
(Россия) с ультрафиолетовым детектором	
Весы аналитические ВЛА-200	ΓOCT 24104
Пробоотборное устройство ОП-442ТЦ	
(ЗАО «ОПТЭК», г. Санкт-Петербург) или	
аспирационное устройство ЭА-1	ТУ 25-11-141478
Барометр-анероид М-67	ТУ 2504-179775
Термометр лабораторный шкальный ТЛ-2,	
цена деления 1 °C, пределы измерения 0—55 °C	ТУ 215—73Е
Мерные колбы, вместимостью 50 и 100 см ³	ΓΟCT 1770
Пилетки, вместимостью 1, 2, 5 и 10 см ³	ГОСТ 29227

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

210

3.2. Реактивы

Феназахин с содержанием действующего вещества 99,3 % (Дау Агросайнс, Швейцария)	
Ацетон, чда	ГОСТ 2603—79
Ацетонитрил для хроматографии, хч	ТУ 6-09-4326—76
Вода бидистиллированная или	
деионизированная	ГОСТ 6709—72
н-гексан, ч	ТУ 6-09-3375—78
Метиловый спирт, хч	ГОСТ 6995—77
Изопропиловый спирт (пропанол-2), хч	ТУ 6-09-402—75

3.3. Вспомогательные устройства

Воронки химические, конусные, диаметром	
34—40 мм	ΓΟCT 25336—82E
Колбы грушевидные со шлифом, вместимостью	
100 см ³	ΓΟCT 1039472
Насос водоструйный	ГОСТ 10696—75
Ротационный вакуумный испаритель ИР-1М или	ТУ 25-11-917—76
ротационный вакуумный испаритель В-169	
фирмы Buchi, Швейцария	
Холодильник водяной, обратный	ГОСТ 9737—70
Хроматографическая колонка стальная, длиной	
25 см, внутренним диаметром 2,1 мм,	
содержащая Spherisorb S5 ODS 2, зернением	
5 мкм (фирма HICHROM)	
Хроматографическая колонка стальная, длиной	
64 мм, внутренним диаметром 2 мм, содержащая	Ī
Силасорб 600, зернением 5 мкм	
Шприц для ввода образцов для жидкостного	
хроматографа, вместимостью 50 мм ³	
Установка для перегонки растворителей	
Груша резиновая	
Стеклянные палочки	

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

4.1. При работе с реактивами соблюдают требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами по ГОСТ 12.1005—88.

4.2. При выполнении измерений с использованием жидкостного хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на жидкостном хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят очистку ацетонитрила, нгексана, подготовку подвижных фаз для ВЭЖХ, приготовление растворов, кондиционирование хроматографических колонок, установление градуировочной характеристики, отбор проб.

7.1. Очистка ацетонитрила

Ацетонитрил кипятят с обратным холодильником над пентоксидом фосфора не менее 1 ч, после чего перегоняют, непосредственно перед употреблением ацетонитрил повторно перегоняют над прокаленным карбонатом калия.

7.2. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты, до тех пор, пока она не перестанет окрашиваться в желтый цвет, водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.3. Подготовка подвижных фаз для ВЭЖХ

7.3.1. Подвижная фаза № 1

В мерную колбу вместимостью $1\,000\,\mathrm{cm}^3$ помещают $850\,\mathrm{cm}^3$ ацетонитрила, добавляют $150\,\mathrm{cm}^3$ бидистиллированной воды, перемешивают, фильтруют и дегазируют.

7.3.2. Подвижная фаза № 2

В мерную колбу вместимостью $1\,000\,\mathrm{cm}^3$ помещают $900\,\mathrm{cm}^3$ метанола, добавляют $100\,\mathrm{cm}^3$ бидистиллированной воды, перемешивают, фильтруют и дегазируют.

7.3.3. Подвижная фаза № 3

В мерную колбу вместимостью 1 000 см³ помещают 970 см³ н-гексана, добавляют 30 см³ изопропилового спирта, перемешивают, фильтруют.

7.4. Приготовление градуировочных растворов

7.4.1. Серия А (измерение по п. 7.7.1.1)

7.4.1.1. Исходный раствор феназахина в ацетонитриле для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,01 г феназахина, растворяют в 50—70 см³ ацетонитрила, доводят до метки этим же растворителем, тщательно перемешивают. Раствор хранится в морозильной камере в течение месяца.

Рабочие градуировочные растворы феназахина готовят объемным методом путем последовательного разбавления исходного стандартного раствора.

- 7.4.1.2. Раствор № 1 феназахина для градуировки (концентрация 10 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 10 см³ исходного стандартного раствора феназахина с концентрацией 100 мкг/см³ (п. 7.4.1.1), разбавляют ацетонитрилом до метки. Раствор хранится в холодильнике в течение месяца.
- 7.4.1.3. Рабочие градуировочные растворы № 2—6 (концентрация 0,05—0,5 мкг/см³). В 5 мерных колб вместимостью 100 см³ помещают по 0,5; 1,0; 2,0; 3,0 и 5,0 см³ стандартного раствора № 1 с концентрацией 10 мкг/см³ (п. 7.4.1.2), доводят до метки подвижной фазой № 1 (измерение по п. 7.7.1.1.1) или подвижной фазой № 2 (измерение по п. 7.7.1.1.2), тщательно перемешивают, получают рабочие растворы №№ 2—6 с концентрацией феназахина 0,05; 0,1; 0,2; 0,3 и 0,5 мкг/см³, соответственно. Растворы хранятся в холодильнике в течение 10 дней.

7.4.2. Серия Б (измерение по п. 7.7.1.2)

- 7.4.2.1. Исходный раствор феназахина в гексане для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,01 г феназахина, растворяют в 50—70 см³ гексана, доводят до метки этим же растворителем, тщательно перемешивают. Раствор хранится в холодильнике в течение месяца.
- 7.4.2.2. Рабочие градуировочные растворы №№ 7—11 (концентрация 0.5—5.0 мкг/см³). В 5 мерных колб вместимостью 100 см³ помещают по 0.5; 1.0; 2.0; 3.0 и 5.0 см³ исходного стандартного раствора феназахина в

гексане с концентрацией 100 мкг/см³, доводят до метки подвижной фазой № 3, тщательно перемешивают, получают рабочие растворы №№ 7—11 с концентрацией феназахина 0,5; 1,0; 2,0; 3,0 и 5,0 мкг/см³, соответственно. Рабочие стандартные растворы хранятся в холодильнике в течение 10 лней.

7.5. Отбор проб

Отбор проб воздуха проводят в соответствии с требованиями ГОСТ 12.1.005—88 «ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны».

Воздух со скоростью 3—5 дм 3 /мин с помощью электроаспиратора протягивают через бумажный фильтр «синяя лента», закрепленный в фильтродержателе. Для измерения концентрации феназахина на уровне $^{1}/_{2}$ ОБУВ воздуха рабочей зоны необходимо отобрать 3,5 дм 3 воздуха.

Для измерения концентрации феназахина на уровне 0,8 ОБУВ атмосферного воздуха необходимо отобрать 90 дм³ воздуха.

Срок хранения отобранных проб, помещенных в полиэтиленовые пакеты, в холодильной камере при $4 \, ^{\circ}\text{C} - 10$ дней.

7.6. Кондиционирование хроматографических колонок

Промывают колонку подвижной фазой (п. 7.2) в течение 30 мин при скорости подачи растворителя 0,4 или 0,1 см³/мин до установления стабильной базовой линии.

7.7. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади или высоты пика (отн. единицы, мм) от концентрации феназахина в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 5 растворам для градуировки: растворы №№ 2—6 или растворы №№ 7—11.

В инжектор хроматографа вводят по 20 мм³ градуировочного раствора №№ 2—6 или по 5 мм³ раствора №№ 7—11 и анализируют в условиях хроматографирования по п. 7.7.1. Осуществляют не менее 3 параллельных измерений.

7.7.1. Условия хроматографического анализа

Измерения выполняют при следующих режимных параметрах:

7.7.1.1. Жидкостный хроматограф с ультрафиолетовым детектором Perkin-Elmer (США).

Колонка стальная длиной 25 см, внутренним диаметром 2,1 мм, содержащая Spherisorb S5 ODS 2, зернением 5 мкм.

Температура колонки: комнатная Скорость потока элюента: 0,4 см³/мин Рабочая длина волны: 263 нм

Чувствительность: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм³

7.7.1.1.1. Подвижная фаза: ацетонитрил-вода (85:15, по объему)

Ориентировочное время выхода феназахина: 7,8—8,0 мин

7.7.1.1.2. Подвижная фаза: метанол-вода (90:10, по объему)

Ориентировочное время выхода феназахина: 7,8—8,0 мин

Линейный диапазон детектирования: 1-10 нг

7.7.1.2. Альтернативные условия хроматографирования

Жидкостный хроматограф с ультрафиолетовым детектором Милихром (Россия).

Колонка стальная длиной 64 мм, внутренним диаметром 2 мм, содержащая Силасорб 600, зернением 5 мкм.

Температура колонки: комнатная

Подвижная фаза: н-гексан-изопропанол (97: 3, по объему)

Скорость потока элюента: 100 мм³/мин

Рабочая длина волны: 220 нм

Чувствительность: 0,4 ед. абсорбции на шкалу Скорость движения диаграмной ленты 300 мм/ч

Объем вводимой пробы: 5 мм³

Ориентировочный удерживаемый объем феназахина: 260 мм³

Линейный диапазон детектирования: 2,5—25 нг

Образцы, дающие пики большие чем рабочий градуировочный раствор с максимальной для используемых условий хроматографирования концентрацией, разбавляют соответствующей подвижной фазой.

Градуировочный график проверяют ежедневно по анализу 2-х стандартных растворов различной концентрации. При получении результатов, которые отличаются более чем на 6 % от данных, заложенных в градуировочную характеристику, ее строят заново, используя свежеприготовленные рабочие стандартные растворы.

8. Выполнение измерений

Фильтр с отобранной пробой переносят в химический стакан вместимостью 100 см³, заливают 10 см³ ацетона, помещают на встряхиватель на 10 мин. Растворитель сливают, фильтр еще дважды обрабатывают новыми порциями ацетона объемом 10 см³.

Объединенный экстракт упаривают в грушевидной колбе на ротационном вакуумном испарителе при температуре бани не выше 40 °C почти досуха, оставшийся растворитель отдувают потоком теплого воздуха, остаток растворяют в 10 см³ подвижной фазы № 1 (№ 2) или в

1,0 см³ подвижной фазы № 3 и анализируют при условиях хроматографирования, указанных в п. 7.7.1.1.1 (7.7.1.1.2) или 7.7.1.2, соответственно.

Пробу вводят в инжектор хроматографа не менее двух раз. Устанавливают площадь (высоту) пика, с помощью градуировочного графика определяют концентрацию феназахина в хроматографируемом растворе.

Перед анализом опытной пробы проводят хроматографирование холостой (контрольной) пробы — экстракта неэкспонированного фильтра.

9. Обработка результатов измерений

Массовую концентрацию феназахина в пробе воздуха рабочей зоны X, мг/м³, рассчитывают по формуле:

$$X = \frac{C \cdot W}{V_{20}}$$
, где

C — концентрация феназахина в хроматографируемом растворе, найденная по градуировочному графику в соответствии с величиной площади хроматографического пика, мкг/см³;

W – объем экстракта, подготовленного для хроматографирования, см 3 ; V_{20} – объем пробы воздуха, отобранного для анализа, приведенного к стандартным (давление 760 мм рт. ст., температура 20 °C), дм 3 .

$$V_{20} = \frac{0.386 \cdot P \cdot ut}{273 + T}$$
, где

T – температура воздуха при отборе пробы (на входе в аспиратор), °С;

Р – атмосферное давление при отборе пробы, мм рт. ст.;

u – расход воздуха при отборе пробы, дм³/мин;

t - длительность отбора пробы, мин.

Примечание. Идентификация и расчет концентрации феназахина в пробах могут быть проведены с помощью программ обработки хроматографических данных с применением компьютера, включенного в аналитическую систему.

10. Оформление результатов измерений

За результат анализа (\overline{X}) принимается среднее арифметическое результатов двух параллельных определений X_1 и X_2 $(\overline{X} = (X_1 + X_2)/2)$, расхождение между которыми не превышает значений норматива оперативного контроля сходимости (d): $|X_1 - X_2| \le d$.

$$d = \frac{d_{omh.} \cdot \overline{X}}{100}$$
, мг/м³, где

d — норматив оперативного контроля сходимости, мг/м 3 ; d_{omn} — норматив оперативного контроля сходимости, % (равен 10 %).

При превышении норматива оперативного контроля сходимости измерения повторяют. При повторном превышении норматива d выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Результат количественного анализа представляют в виде:

• результат анализа \overline{X} (мг/м³), характеристика погрешности δ , %, P = 0.95 или $\overline{X} \pm \Delta$ мг/м³, P = 0.95, где

$$\Delta = \frac{\delta \cdot \overline{X}}{100}$$
, Mr/M³

Результат измерений должен иметь тот же десятичный разряд, что и погрешность.

11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с рекомендациями МИ 2335—95. ГСИ. Внутренний контроль качества результатов количественного химического анализа.

12. Разработчики

Юдина Т. В., Федорова Н. Е., Волкова В. Н. (Федеральный научный центр гигиены им. Ф. Ф. Эрисмана, г. Мытищи Московской обл.).