ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕПАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЯ И СООРУЖЕНИЯ

Серия ПК-01-110/68

ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫЕ ПОДСТРОПИЛЬНЫЕ ФЕРМЫ ДЛЯ ПОКРЫТИЙ ЗДАНИЙ СО СКАТНОЙ КРОВЛЕЙ ПРОЛЕТАМИ 18, 24 и 30 м С ШАГОМ СТРОПИЛЬНЫХ ФЕРМ 6 м

BUTTYCK II

РАБОЧИЕ ЧЕРТЕЖИ ПОДСТРОПИЛЬНЫХ ФЕРМ
С ПРЯДЯМИ И СТЕРЖЕНИИ КЛАССА А-V. Ат-V и Ат-VI

ГОСУДАРСТВЕННЫЙ КОМИ. 2Т СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА ВГОССТРОЯ СССРІ

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАПИ ЗДАНИЯ И СООРУЖЕНИЙ

Серия ПК-01-110/68

ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫЕ ПОДСТРОПИЛЬНЫЕ ФЕРМЫ ДЛЯ ПОКРЫТИЙ ЗДАНИЙ СО СКАТНОЙ КРОВЛЕЙ ПРОЛЕТАМИ 18, 24 и 30 м С ШАГОМ СТРОПИЛЬНЫХ ФЕРМ 6 м

BUITYCK I

РАБОЧИЕ ЧЕТЕЖИ ПОДСТРОПИПЬНЫХ ФЕРМ
С ПРЯДЯМИ Ж СТЕРЖНЯМИ КЛАССА А-V, Ат-V и Ат-VI

PASPAROTAHIN

Госурпрогознала судене Труглясого
Красного Знамики

фосктивам института. «РОМСТРОЙТРОЕКТ

совместно с НИИЖБ

Утверждени и введени в действие Госстроем СССР Постано ление № 180 от 27/УШ-1974г.

REHILING NHCINIAL INLOSCED INCRCHAGENER

MOCKS

TK Подстропильные фермы пролетом 12м ПК-01-110/68

1974 Содержание Дин ПК-01-110/68

1977 Запал 3

3			
:	TK	Подстропильные фермы пропетом 12м	17 K
	1974	Содерфание	Bon

III 2

C-01-110/68

ROACHMTENGHAS BANHORA

1. Beinger T Abnacter Rononnemem & Deinacker Tepm n. -ol-llo/68. B Ranhein Beins & Bringenei northonnahaie depmal, Apmindebahaie Ctepgehamm karaca A. T. no 1911-171-67, Ctepgehami Rancob At -T. At -T. no 1001 10884-71 in nordamin 17-7 no 1001 13840-68 (Hopmathence Conpotheneme opagen nobelweho c 15000 Ro 16500 Kr/cm²).

Onanygovnose и арматурноге чертефа подстропильных ферм приведены в выпуске I данной серии.

2 Податропиль ые фермы расс птаны на нагризки, приведенные в выпуске I дачной серии.

Інфине поясн ферм с напрягаемой арматурой классов п- и Ат-И рассчитаны по эторой категории трещино стойкости, с напрягаемой арматурой классоз А-ги Ат-У-по третбей категории.

3. Парки подстропильных фе и обозначены шифрон, состоящим из букв ПФ и чисел 1, 2, 3 и 4, соответствующих определенной нагрузке, и индексов П, АЕ, ЯгЕ и ЯТЕ, определяющих вид пределяющих вид пределяющих вид пределяющих вид пределяющих вид пределяющих вид пределяющих вид пределиназначениюх для установки у поперечных температурных швов и торцов зданий, добавлена буква к, например, ПФ 3 АЕ к.

BEIGOP HAPKH ROGETPORM TEHON DEPTHE ROUSBORNES ROUSE REPHANCE COCPEROTOMENHOIX HAPPSOK P., PZ WP3, RPHBERENHOIX B THEN. 1 BEINGE R I CEPHH RE 201-110/69.

TK	ROBETPONUNGHOIE OPEPHOI RPONETON 12 M	17K-01-	110/68
1974	Пояснительная записка	BSINYCI II	Suct 3
		3060	7 5

4. Нанбольшая величина предварительных нап-

ANA APHATYPE KNACA N-7.

60 = 0,75 Ra" = 0,75 · 16500 = 12375 Er/cm =

ANA APMATYPE ENACEA AT A AT -T

60 = 0,9 Ra" = 0,9.8000 = 7200 Er/cm =

RNA APMATYPE ENACEA AT -T

60 = 0,9 Ra" = 0,9 · 10000 = 9000 Er/cm =

При натафении межаническим спосовоч донкратами на эпоры стенда потеря предварительного напрафення от теппературного перепеда принята равной воокуст², на силовую форму – нулю. При натяфении стерфневой арматуры на силовую форму потеря предварительного напрафения от продольной деформации формы условно принята равной воо куст²

ЭЛЕКТРОТЕРНИЧЕСКИЙ СПОСОВ НАТЯДЕНИЯ

ПРИПЯТУРЫ РЕКУПЕНДУЕТСЯ ТОЛЬКО ДЛЯ СТЕРДЕНЕЙ
КПАССОВ Я-Т И ЯТ-Т, ПРИ ЭТОМ ВО = 7000 KI/CM2

5. ENGINEERA PONHOCTO GETONA PAR CHUCKE MATA PENNA PONHATA B PREJENAN 07-075 OT PROCETTION PROGRAMMA PARENTE 56.

6. LANHOL TO PACYETY, PHINEHENHIO IN NOTOTOBRIEHHO POLITICONNOHOLIX DEPH, TO CONTPORN
38 NOTOBREHHEN N PRIEHENH DEPH, A
TAK DE YERSAHNA NO REPEBOSKE, XPAHENNO,
CTPONOBRE N HONTASKY DEPH PRIBEREHOL
B BOINGCEE I CEPHN 11/K-01-110/68.

Податропильные фермы пропетом 12 м ПК-01-110/68

PORCHATENGHAR BANNOEN (NPORONSEHNE) II 4

13060 6

HOMEHEARTS MAPER PEPHU	4	NPOYHOCTH NPOYHOCTH	PACKOD HI HA P BETOHA	9TEP, 9.706 EPHY CTR.J.H	BEC PEPHSI
	POEKTHAS	APH CAYCLE HRTATEHHS	H3	EF	7
17-1AY				805	71
NA-IATY				805	
174 - 1AT YI				765	
M. 11	. 400	280		720	
74-2AV	400	200		905	
74-2ATV				305	
17-2AT 19				893	
174-21			.,, -	826	,, ,
114-35.7			4,5	929	1.,3
174 35.7V	ĺ			929	
/1φ-3A7 <u>V</u> I		350		931	`
19-31] 500}	350		852	,
NA YAV	300			1115	
14-4ATY				1115	
ハサ- YAT 型		<i>375</i>		1107	
19-41	ł	""		1017	

TK	ROBETPORHNEHUE DEPHU RPONETOH 12H	1/t-01-110/68
1974	TEXHMYECKHE XAPAKTEPHCTHKH ϕ EPH $\Pi\phi$ - $\Pi\phi$ \ddot{Y} \div $\Pi\phi$ - Ψ A \ddot{Y} ; $\Pi\phi$ - Π A \ddot{Y} $$	BENDER SHOT
*		BOSO 7

Мярка фермы	BETOHA NO	A THOUHOCTS	PACTOR NA P	IATEPHANOS PEPMY	BEC
— CA GERMA		75 AT HE NAV CAUCKE HATTU ENNA	BETOHA M3	CTANH Kr	фEPNЫ T
17\$ - 1A \(\bar{Y} K				8/8	
174-1ATEK				8/8	
174-1AT YIK				778	
17\$-111K	400	200		734	
77-2A YK	400	.280		9/8	
MAP- ZATEK				9/8	
MA - ZATYK				905	
17\$ -211K			6. 1	839	
77- 3A TK			4,4	941	11,0
n# - 3AT YK		350		941	
1792 - 3ATVIK		330		943	
17¢-317K	500			£36	
ΠΦ- 4A <u>V</u> K	300			1125	
MAP HATEK		2~c		1125	
17¢ 4ATVIK		375	_	1116	
174- 411K			·	1028	

IK ПОДСТРОПИЛЬНЫЕ ФЕРМЫ ПРОЛЕТОМ IZ M ПК-01-110/68

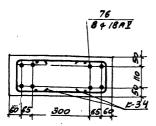
FYR. G. WINGS LANGUEDING

1974 TEXHHYECKHE XAPAKTEPHLI MEN PEPM TAPIATE THAYATE BUTTEN SINCT 119-1ATTE: TIP-HATTER; TAPIATTER: TAPHATTER; TAPIATTER: TAPHATTER: TAPHATTER

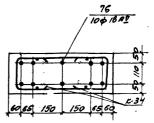
	-		MP	MAT	SPH	b/E	ЭЛ	EME	476	/					3 ALA	PRHH	E PAGE	MEHTO	
MAPKA	0	TAS	76	APN	ATY	PIF	7,9	no	10	CT 5	78/-	0.	CTANS NC VOET .	,	i	10 181-61*	TAND NPO- ERT-	۷.	
PEPME	по	E NA FOCT	CCA 7 38	A-1 0-7/1			KAR To				7		67. V.S. Kanca	ВСЕГО	no roes	Lenasa A-III 100 1007, 505845	380-7/4	per o	OS W, PRASE CTRN
.			10	22	Kroro	6	1/2	4, 1	1M 25	28	HTORU	6, mm	ф <i>им</i> 5	per .		PMM	Post &	-5 ·	
	6-	8	1/2		28,9		1	Ť				191,2	<u> </u>			/2		Er	200
11 dp-1A !	9,0	10,3		-	-0,5	70,0	201,2	,	183,6	<u> </u>	134,0		1,,3	722,2	1.2	9,6	66,0	82.8	803
ΠФ-2A <u>¥</u>	9.0	-	15,9	9.6	34.5	40,0	267,2	-	-	230,4	537,6	239,0	11,3	822,4	7.2	9.6	66,0	82,8	905
Пф-ЗАТ	9.0	-	15,9	9.6	34,5	40,0	267,2	<u>)</u>	-	230,4	537.6	262,5	11.3	846, 3	7,2	9.6	66,0	82,8	92,
Пф-4АТ	23./	-	15,9	9.6	48,6	40.0	196,2	205,2	-	230,4	67/.8	310,7	1.4	1032,5	7,2	9.6	66,0	82,8	11/5
10p-18Pz	8,9	10,3	_	9.6	26.3	43.0	266,0	-	183,6	_	492,6	189,6	11,3	7. 2,3	9.0	10,2	76,4	95,6	8/2
Пф-241/2	8,9		15.9	3,6	34.4	43.0	266,0	-	_	230,4	535, /	2370	11,3	822,1	9,0	10,2	76,4	95,6	917
Пф-3A <u>T</u> к	8,0		15,9	9.6	34	43.0	266,0	_	-	230,4	539,4	2697	11,3	845,8	9,0	10,2	764	95,6	94/
Mab-4AVE	22,5	_	15,9	9.6	48.0	43.0	196,2	202,4	_	230,4	672,0	308,1	1.4	1029,5	90	10,2	Pe (-

PP-141 - UA-HAY

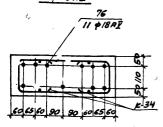
CTRAN HA DEPMOI

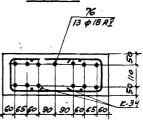

Source The

	5	San State				APA	1875	PHBI	E	3/	16ME	HTE	/				3AKV	RAND	E PAE	MENTE	-
MOA	١	MAPER	C	TAN	· b	A PM	ATY	PHA	A F	10 1	OET.	5781	-6/#	CTRITO NO TOST	CTAAB NO TOCT	(2/)	CTAN	781-64	CTRAS NPO-		
Подстропильные		фермы	no	<u> 1067</u>	380	A-I -71*			10 FO		058-	65	•	-9/ Etacca HT-I	B-I	BCETO	A-Z	KANGUA A-III NO YOUT	LATTINGS NO NOCT 380-71 MAPEN BLT3LNI	BUETO	064 1990 1797
SANNE PEPME		. 3	1	1	10	22	HOTO	6	1/2	Ø N	25		Horo	18	ØMM 5	AZ-	Ø MM	\$ MM	neabun		
ž			-	٠	 '`		 	۳	1/2	10	-23					2	20	/2	5=10	Er	2
6		ΠΦ-IATI.	9.0	10,3		9,6	28,9	40,0	267,2	_	183,6	_	490,8	191,2	11.3	722,2	7,2	9,6	66,0	82,8	80
DEPM61		ΠΦ-2ATĬ	9.0	-	15,9	9,6	34,5	40.0	267.2	- 3	-	230,4	537.6	239,0	11,3	822,4	7.2	9.6	66,0	82,8	90.
		11 4-3AT	9,0	-	15,9	9.6	34,5	40.0	267.2	-	-	230,4	537,6	262,9	11,3	8463	7,2	9,6	66,0	82.8	92
		Пф-4АТУ	23,1	_	15,9	9,6	48,6	40,0	196,2	205,2	-	230,4	671.8	310,7	1.4	1032,5	7.2	9.6	66,0	82,8	111
		Πφ-ΙΑΤΫΕ	8.9	10,3	-	9,6	28.8	43.0	266,0	-	/83.6	-	492.6	189,6	11.3	722,3	9.0	10,2	76,4	95,6	81
,		Πφ-2A7 <u>Y</u> ε	8,9	-	15,9	9.6	34,4	43,0	266,0	-	_	230,4	539.4	237,0	//,3	822,1	9.0	10,2	76.4	95,6	9/:
	+	NO-3ATER	8.9	-	15,9	9.6	34,4	43.0	266,0	_	-	230,4	539.4	260,7	11,3	845,8	9.0	10,2	76,4	95,6	94
١	7.0 0	MO-YATTE	22.5	_	15.7	9.6	48,0	43,0	196,2	202,4	1	230,4	672,0	3081	1.4	10295	40		76,4	1000	

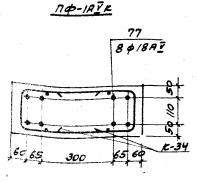

	ス	-			A	PY.	ATY	PHE	18	7	175	MEH	761			·	3AKNI	RHOM	E SINE	ENT 61	
	Под	44 0 0 0 0	6	TR			OMA.							10/00	CTRAL 10/0 . 6797-		CTA ST FOCTS	6 110	CP2016 1190-	-	
RLEGORD	Подетропильные	MAPKA \$EPM \$1			eca ET 3				K NO	7860 FOCT	H 505	A- <u>T</u> T 58!	5#	-71.	-53# LMAX B-I	BUETO	FARCEA A-I NO TOET 380-7H	A-11	3807M 11 ***	-	OSWAN PROJEG ETRITH
1	76				b, MM		Hrore	-		Ø M	M		HIDO	\$ MM							
	\$		6	8	10	22	Ar	6	/2	18		28	Er	16	5		Ø, MM 20	9. MM 12.	0=10	20	25
3	ie de	Πφ-IRT <u>F</u>	9.0	103	_	9.6	28,9	40,0	267,2	 -	183.6	-	190,8	151.2	11.3	682.2				·	765,0
011 112 013 0400	EPM61	Πφ-ZATŢ	9.0	-	15,9	9.6	34,5	.2,0	267,2	-	-	230.4	537.6	226,8	11,3	810.2	7.2	_		<u> </u>	893.
		Пф-ЗЯТ <u>Я</u>	9.0	-	15,9	9,6	34,5	40,0	267,2	-	-	230,4	537.6	-54.5	11.3	848.0	7.2	-		<u> </u>	930,
	RPOSETOM	ΠΦ-4RT <u>Ψ</u>	23.1	-	15,9	9.6	48,6	40,0	196,2	205,2	_	230.4	671,8	3024	1.4	1024, 2	7.2	<u> </u>	<u> </u>		/107,0
	WO.	N#-IATTE	8,9	10,3	-	9.6	28,8	43,0	266,0	-	/83.6	-	492.6	149.6	11.3	682,3		-		-	
İ	12 %		 	-		0.0		-		1	-			 		_	1			95,6	
		ΠΦ-2ATĪIE	8,9	_	/5,9	9,6	34,4	43.0	266,0		_	230,4	539,4	229,9	//.3	809.5	9.0	10.2	76,4	75.6	905.
Rummy	m-c	Пф-ЗАТЁЕ	8,9	-	15,9	9.6	34.4	43,0	266,0		-	230,4	539,4	261.8	14,3	846.9	9.0	10,2	76,4	95,6	942.
0	UK-01-110/68	Пф-477 Е	225	<u> </u> -	15.9	9.6	58.0	43.0	196.2	202,4		•	1	299,2		1020,6	_	1		1.	1

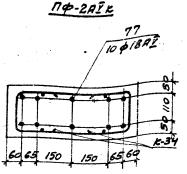
50	×	<u> </u>				RP	MAT	Y P II	L/E		-			**********							
	2			CT	904						3√E,	MEH	761		<u> </u>		T		b/E 9/16	EMENTS!	
861	одет	MAPKA	-				PMR	190		10/	OCT.	578/-	6/#	CTRNB NO TOET	roct			-78/LI	CTRIB NPO- CATHRA		O SIGN
B 5160PEA	Подстропильные	фБРМЫ		0 10	CR 267.	380-	7/#		K.	100	A /	9- <u>I</u> I 958-6	55*	-68	KRACO	Baero	KAACA A-I no 10et 380-7M	RANKEA A-III NO POET	10CT 380-7/M Mapen	BUETO	ANCOLO LTRIPH
0	10		6	8	MM 10	22	Horo	6	/2	ф, м 18	_	28	HTOTO	MM	P MM		фим	Ø MM	профия		İ
HUWLD	6	Πφ-1n	9.0	10 2		00							Er	15	5	Kr	20	12	8=10	RT	res
3	8		-	10,5		3.6	28,9	10.0	207,2		/83.6	_	490,8	106,4	11.3	637,4	7.2	9.6	66,0	82.8	720,1
۱ ا کو	EPM b/	17¢-21	9.0	-	15,9	9.6	34,5	40.0	267,2	-	2	2304	537,6	159.6	//.3	743.0	7.2	9.6	66.0	82.8	825
		114-31	9,0	-	15,9	9,6	34,5	40.0	267,2	-	-	230,4	537,6	/86,2	11,3	769,6	7.2	9.6	66,0	82,8	852,
& EPM6/	APONET.	11-4n	23./	-	15,9	9.6	48.6	40.0	196,2	205,2	 -	230,4	671,8	2/2,8	1.4	934,6	7,2	9,6	66,0	82,8	1017.
10/	70M /	Nop-INE	8,9	10,3	-	9,6	28.8	43,0	266,0	-	183,6	-,	492,6	105,6	11.3	638,3	9.0	10,2	76,4	95,6	733,
	23	ΠΦ-211K	8,9	-	15,9	9,6	34.4	:3,0	266,0	_	_	230,4	539,4	158,4	11.3	743,5	9.0	10,2	76,4	95, 6	839./
Burne	ME-C	ΠΦ-31 E	8,9	-	15,9	9.6	34,4	43,0	266,0	-	-	250.4	539,4	1848	11,3	769,9	9.0	10,2	76,4	95,6	865,
ne sinci	NE-O-110/68	ΠΦ-47K	2,5	_	15,9	9.6	48.0	43.0	196,2	202,4	_	230,4	672,0	211,2	1.4	932,6	9,0	10,2	76,4	956	1028

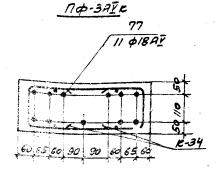

no-IAI

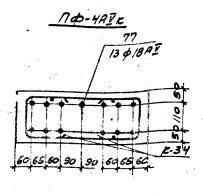

11¢-2A¥

ΠΦ-3AI

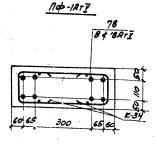

174-4P V

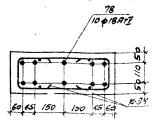



1. При натяжении механическим способом на упоры стенд q или сиповую форму усилие натяжелия стержня ϕ 18 q1 - 18.3 τ .

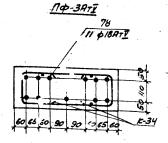

2 ВЕЛИЧИНА КОНТРОЛЛРУЕМОГО ПРЕДВЯРИТЕЛЬНОГО НАПОЗТЕНИЯ АРМАТУРЫ ПРИ НАТЯЖЕНИИ ЭЛЕЕТРОТЕРМИЧЕСКИМ СПОСОБОМ ДЛЯ СГАЛИ КЛАССА H = 1 Go=7000 e^{-1} /CM² ПРИ ЭТОМ ДОПУСТИМЫЕ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ НЕ ДОЛ-ЗНЫ ПРЕЗЫМАТЬ $\frac{1}{2}$ СВО e^{-1} /CM².

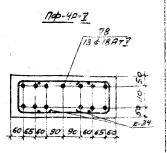
		17K-0/-	- /
1974	РАСПОЛОЖЕНИЕ НАПРЯГАЕМОЙ АРМАТУРЫ В ИНЖИЕМ ПОЯСЕ ФЕРМ ПФ-/А] - ПФ-4А].	Bunyek <u>I</u>	ANCT 11
		13150	13


1. ПРИ НАТАЖЕНИИ МЕХАНИЧЕСКИМ СПОСОБОМ HA STOPH CTENDA MAH CHAOBYO COPMY YOMAHE HATAGEHHA CTERRY \$1801 -18,3T.

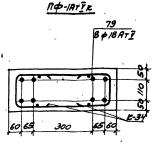

2. BENHAHHA KONTPONHPYEMOTO ПРЕДВЯРИТЕЛЬНОГО НЯПРЯ-ЖЕНИЯ ЯРМЯТУРЫ ПРИ НЯТЯЖЕНИИ ЭЛЕКТРОТЕРМИЧЕСКИМ СПОСОВОМ ДЛЯ СТЯЛИ КЛЯССЯ R-V $G_0=7000$ КГ/СМ 2 ЛРИ ЭТОМ ДОПУСТИМЫЕ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ НЕ ДОЛ-ЖНЫ ПРЕВЫШЯТЬ $^{\pm}$ 630 КГ/СМ 2 .

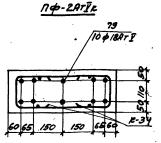
PORETPORMALHELE PEPMLI APPORETOM 12M Расположение напрятаь ой арматуры в нижнем MORCE WERM MA-INTE - MA-4ATE

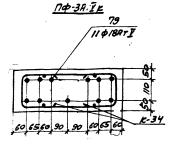

NE-01- 110/68 BUTYGE SHET

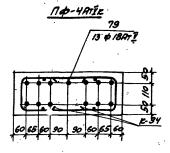


11-2AT I





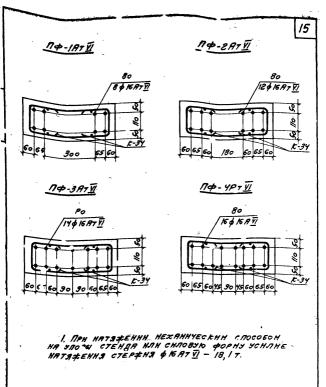

1. ПРИ НАТЯЖЕНИИ МЕХАНИЧЕСКИМ СЛОГОБОМ НА УЛОРЫ СТЕНДА ИЛИ СИЛОВУЮ ФОРМУ УСИЛИЕ ИЛТЯЖЕНИЯ СТЕРЖИЯ Ф 18 АТ $\bar{1}$ -18.3 $\bar{1}$. ВЕЛИЧИНА КОНТРОЛИРУЕМОГО ПРЕДВЯРИТЕЛЬНОГО ЧАПРЯЖЕНИЯ АРМАТУРЫ ПРИ НАТЯЖЕНИИ ЭЛЕСТРОТЕРМИЧЕСКИМ СПОСОБОМ ДЛЯ СТАЛИ КЛАССА АТ- $\bar{1}$ 60-7000 6 / 6 6 7


TK ПОДСТРОПИЛЬНЯЯ ФЕРМЯ ПРОЛЕТОМ 12 M ПК-01-110/68

1974 РАСПОЛОЖЕНИЕ НЯПРЯГЯЕМОЙ ЯРМЯТУЭЫ В ИНЖИЕМ ВИТИК ЛИСТ ПОЯСЕ ФЕРМ ПФ-1817: ПФ-4877.

I. ПРИ НАТЯЗКЕНИИ МЕЖАНИЧЕСЕНМ СПОСОБОМ НА УПОРЫ СТЕНДА ИЛИ СНЛОВУЮ ФОРМУ УСИЛИЕ НАТЯЗКЕНИЯ СТЕРУСНЯ Ф 18 АТЦ-18, ЭТ. 2. ВЕХИЧИНЯ КОНТРОЛИРУЕМОГО ПРЕДВЯРИТЕЛЬНОГО НАПРЯ-

2. Величина контролнруемого предвярительного няпряжения причутуры при нятяжени. Заектротеринуеским способом для стяли клясся Πr - Γ G_o =7000 кг ξ_m 2 при этом долустиные предельные отклонения не долэсны превышять $^+$ 630 кг/см 2

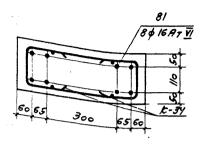

TK

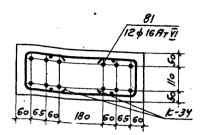
Подстропильняя фермя пролетом 12м

TK-01-110/68

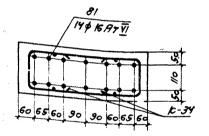
1974 PAGNONOMENHE HANPART ON APMATYPH & HUMHEM BURNER THAT TE. TO 14

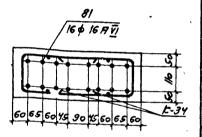
BO60 16

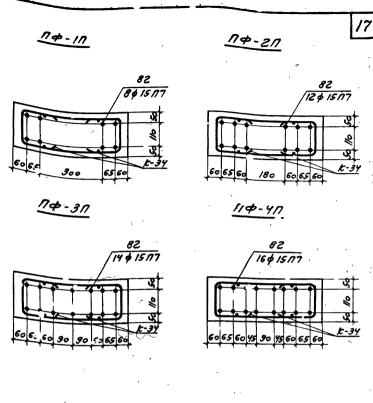



TK ROGETPONHAGHAS PEPHA RPONETOH IZH NE-01-110/68
1974 ROSCE PERH NA-1871- NA-4871. IS

MAP-IATVIE


MA-CAT VIE

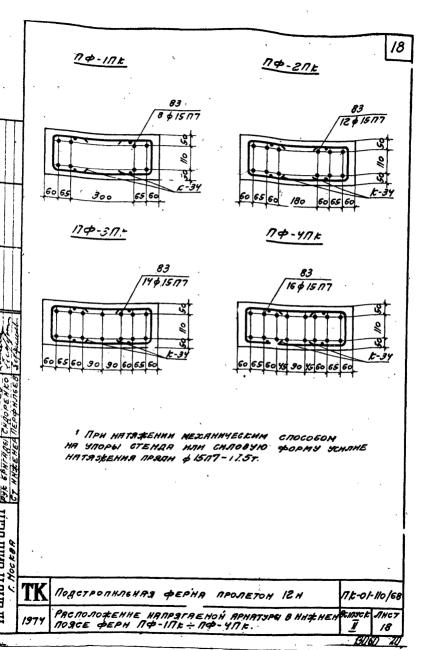



1. При натяжении механическим способом на чпоры стенда или силовую форму чсилие натяжения стержня ф16АТУ - 18.17.

TUTPUKIPUEKT

TK MODETPONHAGHAS PEPHA APONETOH 12 M AL-OI-110/68

1974 PACNOJOJENNE HANPSITEHON APHATYPH BINGER SINGE JACT 103CE PEPH NO-1870 16


13060 18

P. TPH .. ATAMENHH HEXANHYECKHH CHOCOGOH HA YHOPSI CTEHRA HAN CHAOSSIO POPHY YCHAHE MATAMEHAR APARA & 1517-1757.

TK MORETPORMAGHAS DEPHA RPONETOH 12 H $\frac{\pi - 01 - 110}{68}$ 1974 PACROMOREHHE WARPSTREHOÙ RPHATYPU D'HHEH PHRYSCH $\frac{\pi}{12}$ 17

(3061)

Нарка фермы	МАРКА ИЗДЕЛИЯ	KONNI UT.	W BOIL	MCTA TYCKA PMM DI-IH/68	Марка фермы	MAPKA H3BENHO	Kon. UT.		4CTA 174CE 1-116/6
Π φ -/A <u>F</u>	KN1 : : : : : : : : : : : : : : : : : : :	-	19:24	Beinyckz	/4-3A1 Έ	nni, kn2, kn4, kn6, k18+k26 k28+k35 w n03. 49+51	-	19:29	Beinyck I
	1103, 76	8	//	861N. II	1	поз. 78	711	/3	86// <u>II</u>
ΠΦ-2A <u>Υ</u>	KNI, KN2, KN4, KN6, KI8÷K26 F28÷K35 H' N03. Y9÷5'	_	ı J 24	Beinyck I	ПФ-ЧАТ <u>Т</u>	kiiy,kn7,kn8 kn9, ki8:k26, k28:k35 h no3. 49:51		19:24	Beinyeki
	1103.76	10	//	B6111 TI		no3.7°	13	/3	861N <u>II</u>
Пф -3A <u>Ý</u>	KNI, KN2, KNY KN6, K/ª: K26 K28 : K35 W N03. Y9:5/		19:24	CKI	በቀ- Ar <u>፻</u> i	ENI: EN4, EIO: E26, E28:E35W NO3. 49:51	- <u>-</u>	9:24	Bunyck I
	1103 76	//	//	861N. Tî		173. 80	8	15	861∏ <u>Î</u>
П Ф -4А	14 71,E18, E19,E18:E26, E28:E35 W 1103. 49:51	_	/ 9 -24	dunyckI	ΠΦ-2R1 <u>π</u>	ENI, E: 2, ENY ENG E18:E26, E28: E35 W NO3 . 49:51		19-24	8611
~	поз. 76	13	11	Вып. П		113.80	15	15	Вып. <u>Т</u>
ባ ቍ - Ατ <u>፻</u>	KNI÷ KN4, K18 ÷ K26, K28÷K35 W N03. 40-SI	_	1 9: 24	Выпуск	በቀ -3A1 <u>፻</u> ፻	kni, kn2, kny, kn6, ki8÷k26, k28 ÷ k35 h n03. 49:51	_	19:29	8611
	поз. 78	8	/3	861n. Ī		1703. 8o	14,	15	86171 <u>î</u> ī
Πቀ ~2Ατ <u>Υ</u>	kni, kn2, kn4 kn6, ki8÷k26, k 28÷k35 w no3. 49÷Si		19:24	Bonnsck I	በቀ - ሃብ፣ 🗓	KNY, KN7, KN8 KN9, K18:K26 K28: + 35 H N03: Y9:51	_	19:24	Beinycki
	поз. 78	Ю	/3	Bein.	ľ	поз. 80	16	15	B6In.

TK Подстропильные фермы пролетом 12 м Πk -01-110/68
1974 Спецификация арнатурных изделий на фермы выпуск лист $\Pi \phi$ -1

						1	,	· L	
Марка фермы	Нарка нэделия	Кольку. ШТ.	Ы ЛН Н 861П СЕН ПК-Ы-1	YCEA	НАРКА фЕРН61	Нарка Изделия	Kon. UT.	N SHI N SHI CE! Nk-of	PHH.
Π 	KNI + KN4, K18 + K26, K28 + K35, NO3. 49 +51	_	/9:24	Boinger	Пф-3A <u>Y</u> K	KNI, KN2, KN4+KN6, KI8+K35 H NO3. 49:5/	· —	19:24	BunyckI
	1103.82	8	17	86IN. II		поз. 77	11	12	861A
Π φ -2π	ENI, EN2, EN4, EN6, E18-E26, E28 -E35 W N03.49-51	<u> </u>	19:24	175	∏ φ -ΥΑ <u>ν̃</u> κ	KNY, KN7+KN/0 K 18 + K35 W 1103. Y9+51		1924	Bunyer I
	103.82	/2	17	861A		1703.77	13	12	8611. II
Λ + -3η	KNI, KN2, KN4, KN6, K18: K26, K 28: K35 H NO3. Y9:51		19:24	ZZ	ПФ- <i>П</i> Ят <u>ў</u> ю	ENI÷ENS, EIB÷E36H NO3. 49:51	-	19:24	BunyerI
	no3.82	14	17	Вып. П		<i>1103.</i> 79	8	14	8611 II
Пф-4п	KN4, KN7, KN8 KN9, K18+K26, K28 + K35, N03. 49+51	_	19:24	Beinyck I	በቀ 281%	ENI, EN2, EN4 ÷EN6, E18 ÷E35 M N03.49÷51	_	19:24	BunyckI
	no3.82	16	17	861m II		1103.79	10	14	86// T
ΠΦ-IA <u>V</u> K	ENI÷ENS, E18-E36 H NO3. 49:51		19:24	Bunyak I	<i>∏Ф-</i> 38т <u>V</u> ⊭	ENI, EN2, EN4÷EN6, E18÷E35H N03. 49÷51		19:21	Bunger
	1703.77	8	12	В6/Л. П		поз. 79	"	14	Bull
<i>Пф-2А<u>Ў</u>к</i>	Eni, Enz, En4- En6, E18÷E35, 1003. Y9÷51	_	19:24	BunyekI	17 \$ -46 1 b :	Eny, En7:kalo, E18		/9 [;] 2,	Bunyck I
	поз. 77	10	12	Вып. <u>Т</u>	·	ПОЗ. 7 9	/3	14	Bun II
		٠		^					
TK POR	стропиль н	61E	\$EP	1161	пролето	M S M	nk-	01-110	/68

١

1974

CREUN PHERYNS APHATYPHUX HIRENHH HA PEPHUI NO-In- NO-YN; NO-IAFE: NO-YAFE; NO-IATEE: NO-YATEE I

Bunyck

20 0060

Snet

					7	· · · · · · · · · · · · · · · · · · ·			
МАРКА ферны	Марка Ид <u>а</u> Елия	Колич. Ш	CEI	74009	MAPKA SPEPHOI	MAPEA 13 JEANS	Колнч. ШТ.	V1 8611	חח.
中- 和	KNI÷KNS, KIB K35 H NO3.49÷51		19:24	Beinyak I	/IΦ- // κ	Fn + Kn 5, K 8 + K35 H N 03. 49 + 5	_	19:24	BeinyckI
٠,	NO3. 81	8	16"	Bein <u>I</u> T	·	поз. 83	8	/8	Bein II
ก∳-2คา≟ัเ	ENI, EN2, EN4: EN6, E18: E35 W N03. 49:51	_	1924	Bunycki	Π φ -2Λ _k	knī, kn2, kn4 ÷ kn6, k 18 ÷ k 35 n n03. 49 ÷ 51	_	1 9- 24	Beinyak I
	1703.81	12	16	Bun. II		103. 83	12	18	8617
П ф Э АТ <u>ў</u> іс	kni, kn2, kii 4÷kn6, ki8÷r35 n no3. 49÷si	_	19:24	Bunyck I	<i>ΠΦ-3Π</i> κ	Eni, Enz, Eny: Fn6, Ei8: E35 H No3. 49:51		19:24	BeinyckI
	no3. 81	14	16	ВЫЛ. <u>I</u> I		1103.8	14	.8	86.11
<i>ቦቀ-ነ</i> ጠ <u>থ</u> ።	KN 4, KN 7 + KN/0, K 18 + K35 W NO3. 49 + 51	_	19:24	Beimyck I	174-47k	КП 4, КП : EП/0, К18 : E35 и ПОЗ. ЧЭ:51		V 9 -24	BunyckI
	No3. 81	16	16	Bein. I		поз. 83	16	/8	86/∩ <u>I</u> I

MAPER	N 10311	Эскиз	⁴ ИЛИ С <u>Е</u> ЧЕНИЕ ММ	Дэпия ММ	KOMM. WT.	AUNHA	BUGOPEA CTANH		
M3 AE DMA	ynn						\$, MM	Общ дл.	BEC. Fr
"	76		18AZ	11960	1	11,96	IBAY	11,96	239
позиции	77		/8 A ¥	11860	1	11,86	18AZ	11,86	23,7
334	78	•	/8 AT ¥	11960	1	11,96	18ATE	11,96	23 9
1/	79		18ATY	11860	1	11,86	18 ΑΤ <u>Υ</u>	11,86	23,7
3,	80		16ATI	11960	1	11,96	16ATVI	11,96	18.9
19/45	81		16AT <u>E</u>	1/860	'	11,86	16AT 1	11,86	18,7
EM	82		1517	11960	1	11,96	15 117	11,96	13,3
ОТДЕЛВНЫЕ	83	*	15117	11860	1	11,86	1517	11,86	13,2
٥									

ANNHOI HAMPAIREMENT CTEPACHEN TOS. 76-83 DAHOI YCHOBHO TO DANHE OTRAYECH

TK	Подстропильные ферны пролетон 12 м	17K-01-1	110/68
1974	Спецификация приятурных изделий на фермы Пф- Аттік÷Пф-ЧАттік,Пф-ИЛк+Пф-ЧЛК и напрагасная ариатура	8ыпуск <u>Т</u>	SINCT 21
		13060	23