РУКОВОДСТВО

ПО ПРИМЕНЕНИЮ СТЕННЫХ ЗНАКОВ В ПОЛИГОНОМЕТРИЧЕСКИХ И ТЕОДОЛИТНЫХ ХОДАХ

ГЛАВНОЕ УПРАВЛЕНИЕ ГЕОДЕЗИИ И КАРТОГРАФИИ ПРИ СОВЕТЕ МИНИСТРОВ СССР

РУКОВОДСТВО ПО ПРИМЕНЕНИЮ СТЕННЫХ ЗНАКОВ В ПОЛИГОНОМЕТРИЧЕСКИХ И ТЕОДОЛИТНЫХ ХОДАХ

Рекомендовано
Главным управлением веодевии и картографии
при Совете Министров СССР
в качестве пособия
при закладке стенных знаков
в поливонометрических и теодолитных ходах

ИЗДАТЕЛЬСТВО «Н Е Д Р А» МОСКВА 1972 912

P84

УДК 528.01 (02)

Руководство по применению стенных знаков в полигонометрических и теодолитных ходах. М., «Недра». 1972. 56 с. (Гл. упр. геодезии и картографии при Совете Министров СССР).

В руководстве изложены способы закрепления пунктов полигонометрических сетей 2, 3, 4 классов, 1 и 2 разрядов и теодолитных ходов в тех случаях, когда они являются самостоятельной опорой.

Определены преимущества стенных энаков, которые более долговечны и экономичны, чем грунтовые знаки, просты при закладке, не требуют согласований с организациями, эксплуатирующими подземные коммуникации и сооружения, легко отыскиваются в любое время года.

Указаны особенности и требования, предъявляемые к расположению стен-

ных знаков и местам закладки их в вданиях и сооружениях.

Дано описание и приведены рисунки типов стенных знаков, рабочих центров и временных точек, способы и правила их закладки.

Рассмотрены ориентирные и восстановительные системы стенных знаков, способы передачи координат с временных точек, при ориентирной системе на которых выполнялись линейные и угловые измерения на стенные знаки методами редуцирования, полярным, угловыми и линейными засечками, а также привязка к ним.

Освещены вопросы точности работ при координировании стенных знаков и привязки к ним.

В приложениях приведены фотографии типов консоліных стенных знаков, установленных в прошлые годы, образцы привязки стенных знаков (кроки), формы списка мест установки стенных геодезических знаков, акта о сдаче геодезических знаков на наблюдение за сохранностью, каталоги координат и высот. Даны практические примеры вычислений при передаче координат с временных точек на одинарные, двойные и тройные стенные знаки, а также вычисление координат временных точек при привязке к ним полигонометрических и теодолитных ходов.

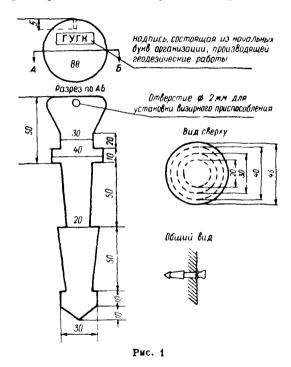
Таблиц 18, иллюстраций 47, список литературы — 22 названия.

В составлении руководства принимали участие работники ГУГК при Совете Министров СССР, МосЦТИСИЗ и Мосгоргеотреста инженеры: Адлин Р. Я., Зимин К. И., Коськов Б. И., Мосалов А. С., Смирнова Н. М., Шляпников В. И. Редактирование осуществлено канд. техн. наук Коськовым Б. И.

I. ОБЩИЕ ПОЛОЖЕНИЯ

- І.1. Пункты полигонометрии 2, 3, 4 классов, 1 и 2 разрядов и съемочного обоснования (когда оно является самостоятельной опорой) на территории городов, поселков, промышленных площадок и сельских населенных пунктов рекомендуется, где это возможно, закреплять стенными знаками.
- 1.2. Стенные знаки более долговечны, чем грунтовые, более экономичны, просты при закладке, не требуют согласований с организациями, эксплуатирующими подземные коммуникации и сооружения, легко отыскиваются в любое время года.
- 1.3. По конструкции стенные знаки подразделяются на консольные (штанговые) и на знаки типа стенного нивелирного репера.
- І.4. Различные конструкции консольных (штанговых) знаков приведены в прил. 1. Стенные знаки этого типа при построении новых сетей устанавливать не рекомендуется. Для возможности эксплуатации ранее закрепленных консольных пунктов в руководстве приводятся описание их и правила привязки.
- I.5. Пункт полигонометрии или съемочного обоснования может быть закреплен одним стенным знаком типа нивелирного репера или группой из двух-трех таких знаков, образующих либо восстановительные, либо ориентирные системы.
- 1.6. На стенные знаки, входящие в ориентирные системы, передаются координаты с временных грунтовых точек, на которых выполняются все угловые и линейные измерения полигонометрических или теодолитных ходов.
- В случае утраты временных грунтовых точек их определяют заново при привязке или проложении полигонометрических или теодолитных ходов.
- І.7. На стенные знаки, входящие в восстановительные системы, координаты не передаются. В случае утраты рабочих грунтовых центров местоположение их восстанавливается промерами от стенных знаков.

II. РЕКОГНОСЦИРОВКА


- II.1. Перед составлением проекта геодезических работ обследуют район работ и выявляют ранее установленные геодезические пункты, которые могут быть либо включены в новую сеть, либо использованы как исходные.
- II.2. После утверждения в установленном порядке проекта геодезических работ производят детальную рекогносцировку и намечают места для установки стенных и грунтовых знаков.
- II.3. При выборе мест установки стенных знаков необходимо соблюдать следующие условия:
- 1) устанавливать временные грунтовые точки или рабочие грунтовые центры в местах, не подверженных влиянию постоянно действующих вибраций (например, от работающего промышленного оборудования);
- 2) между временными точками и центрами стенных знаков ориентированных систем, а также между рабочими центрами и стенными знаками восстановительных систем должна быть обеспечена хорошая видимость; при этом визирный луч при наблюдениях должен проходить не ниже чем на 0,5 м от поверхности земли и не ближе чем на 0,5 м к вертикальной поверхности местных предметов;
- 3) если пункт сети закрепляется системой из двух или трех стенных знаков, то эти знаки должны быть установлены на одном уровне, с колебанием высот не более 10 см; в исключительных случаях разность высот может быть больше и должна быть учтена при камеральной обработке материалов полевых наблюдений:
- 4) здания и сооружения, на которых устанавливают стенные знаки, как правило, должны быть удалены от временных грунтовых точек или от рабочих грунтовых центров не далее чем на 20 м с тем, чтобы обеспечить точность измерения расстояний до стенных знаков, предусмотренную п. V.1 и V.3;
- 5) между стенными знаками, входящими в одну систему и закрепляющими один пункт сеги, не должно быть осадочных швов, а также архитектурных элементов, затрудняющих измерение расстояний между этими знаками;
- 6) для установки стенных знаков выбирают места на стенах зданий и соружений на высоте 0,3—1,2 м от поверхности земли (тротуары, отмостки) с таким расчетом, чтобы архитектурные элементы и конструктивные выступы не препятствовали постановке на знак нивелирной рейки.
- II.4. В результате выполнения работ по рекогносцировке полигонометрических (теодолитных) ходов и мест установки стенных знаков составляют следующие документы:
- 1) рекогносцировочные журналы с привязками мест установки стенных знаков к углам зданий и к поверхности земли (тротуар, отмостка), рабочих центров и временных точек к твердым контурам

ситуации (промеры выполняют рулеткой с отсчитыванием до сантиметров) и составляют зарисовку ситуации окружающей местности;

2) список мест установки стенных знаков, согласованный с главным архитектором города (прил. 2).

ІІІ. ЗАКЛАЦКА СТЕННЫХ ЗНАКОВ

III.1. Для закрепления пунктов полигонометрических и теодолитных ходов можно использовать два типа стенных знаков, конструкции которых утверждены Главным управлением геодезии и картографии при Совете Министров СССР (рис. 1 и 2).

- III.2. Стенной знак, изображенный на рис. 1, изготавливают, как правило, из чугуна. На сферической головке знака просверливают отверстие диаметром 2 мм и глубиной 5 мм, которое служит центром знака и используется для передачи на нее отметки.
- III.3. Для закладки стенного знака (см. рис. 1) в стене здания или сооружения при помощи шлямбура, дрели или шурфобура (отбойного молотка) пробивают отверстие такого размера, чтобы хвостовая часть знака входила в него свободно.

Для диска знака (репера) выдалбливают гнездо с таким расчетом, чтобы плоскость диска оказалась заподлицо со стеной здания.

Приготовленное углубление и гнездо очищают от мусора и обильно смачивают водой. Если этого не делать, то сухой кирпич будет впитывать воду из цементного раствора и тем самым нарушит его связующую способность.

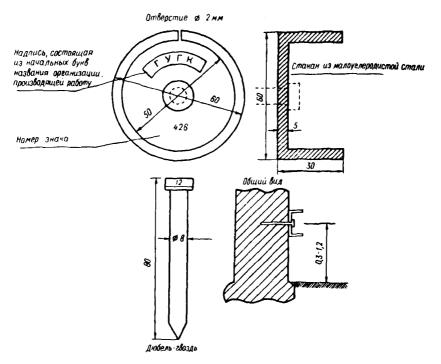
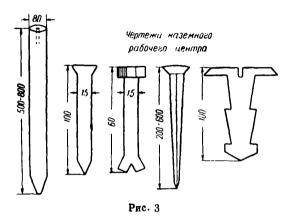


Рис. 2

Отверстие в стене заполняют кашеобразным раствором цемента, смешанного с чистым речным песком в пропорции 1:1. Смесь цемента с речным песком приготавливают в сухом виде, тщательно перемешивают, и только после этого разводят водой. Для кирпичных стен раствор приготавливают жидкий, для блочных и панельных — более густой.


Растворы с мелким песком менее прочны, чем с крупным. Присутствие в песке торфа, перегноя, глины отрицательно сказывается на прочности бетона. Загрязнение песка не должно превышать 2% его веса.

Загрязненная вода также значительно понижает прочность бетона и замедляет его схватывание.

В работах по установке стенных знаков такая вода не должна применяться. При закладке знаков в зимний период, при температуре воздуха ниже $+3^\circ$, воду следует подогревать.

После установки знака поверхность здания (сооружения) приводят в порядок — затирают раствором, штукатурят и т. д. Наружную часть знака покрывают антикоррозийным лаком или краской.

III.4. Стенной знак, изображенный на рис. 2, изготавливают из малоуглеродистой стали. Центром знака этого типа служит отверстие диаметром 2 мм и глубиной 5 мм, просверленное в верхней части диска знака. Верхняя часть диска знака может использоваться и для передачи на нее отметки.

III.5. Для установки стенного знака, изображенного на рис. 2, используется строительно-монтажный пистолет (например, типа СМП-3М). Знак крепится к стене здания (сооружения) при помощи дюбелей, изготовленных из хромистой стали высокой твердости. Порядок выбора дюбелей и патронов, правила эксплуатации монтажного пистолета, условия техники безопасности при работе с ним приводятся в паспорте, прилагаемом к строительно-монтажному пистолету.

III.6. Для закрепления рабочих центров и временных точек можно использовать скальные марки, железные костыли, кованые гвозди, штыри из обрезков арматуры, труб и т. д. (рис. 3), которые либо вабивают в асфальтовое покрытие дорог и тротуаров, либо бетонируют в грунте. Центры таких знаков фиксируют просверленным отверстием, запиленным крестом или керном.

Временные точки у одинарных стенных знаков можно закреплять менее капитально: простыми гвоздями на асфальтовом покрытии и деревянными кольями на открытом грунте.

III.7. Стенные знаки имеют на лицевой стороне номера, отлитые или отчеканенные при заводском изготовлении.

Нумерацию систем стенных знаков производят следующим образом:

1. Если система стенных знаков дублирует грунтовый (постоянный) знак, то всему комплексу присваивается номер грунтового знака с указанием в скобках номеров входящих в него стенных знаков.

Например: пз. 123 (ст. зн. 1432, 1124, 2819) — грунтовый полигонометрический знак № 123, продублированный стенными знаками № 1432, 1124, 2819.

2. Если система стенных знаков является самостоятельным пунктом сети, то этой системе присваивают номер основного знака.

Например: ст. пз. 1432 (ст. зн. 1432, 1124, 2819) — стенной полигонометрический знак № 1432, состоящий из трех знаков — № 1432, 1124, 2819.

Основным в такой системе является средний знак. В системе из двух стенных знаков основным служит левый знак.

Рабочему центру или временной точке в системе стенных знаков присваивают номер основного знака: вр. т. 1432 — временная точка системы стенных знаков № 1432.

- III.8. В результате выполнения работ по закладке стенных (и грунтовых) знаков составляют следующие документы:
- 1) схему ходов с номерами установленных знаков, рабочих центров и временных точек;
 - 2) кроки (прил. 3);
 - 3) акт сдачи знаков на наблюдение за сохранностью (прил. 4).

IV. СИСТЕМЫ СТЕННЫХ ГЕОДЕЗИЧЕСКИХ ЗНАКОВ

IV.1. В зависимости от методов эксплуатации различают ориентирные и восстановительные системы стенных знаков.

1. ОРИЕНТИРНЫЕ СИСТЕМЫ СТЕННЫХ ЗНАКОВ

- IV.2. Ориентирная система стенных знаков, используемая для закрепления одного пункта полигонометрических или теодолитных (в случае самостоятельной опоры) ходов, может состоять из одного, двух или трех стенных знаков, изображенных на рис. 1-2.
- IV.3. Передача координат с временных точек, на которых выполняют основные угловые и линейные измерения полигонометрического или теодолитного хода, на центры стенных знаков, входящих в ориентирные системы, может осуществляться методами редуцирования, полярным, угловой засечки, линейной засечки.
- IV.4. Метод редуцирования, предложенный Мосгоргеотрестом и Т. С. Даниленко, рекомендуется применять, когда пункт полигонометрии или теодолитного хода закреплен одним стенным знаком.
- В практике работ могут встретиться два характерных случая применения метода редуцирования.

- 1-й случай: Стенной знак расположен в холе между двумя постоянными грунтовыми знаками (рис. 4).
 - В поле измерены:

1) по основному ходу — β_1 , β_2 , β_3 , S_1 и S_2 ; 2) для переноса координат на стенной знак — Q_1 , Q_2 , l.

Необходимо найти значения редуцированных элементов хода

$$\beta'_1 = \beta_1 + \delta_1; \ \beta'_2 = \beta_2 - (\delta_1 + \delta_2);$$

 $\beta'_3 = \beta_3 + \delta_2; \ S'_1 \ M \ S'_2.$

Вычисления.

Для того чтобы получить значения поправок δ_1 и δ_2 , надо предварительно найти значения вспомогательных величин: h — высота

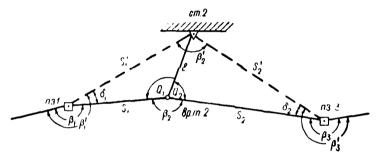
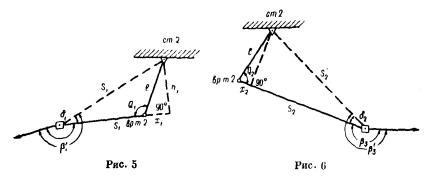


Рис. 4

перпендикуляра, опущенного из центра стенного знака на сторону хода; x — расстояние от основания перпендикуляра до временной точки.

Для наглядности разделим рис. 4 на две части. Левая часть (рис. 5):

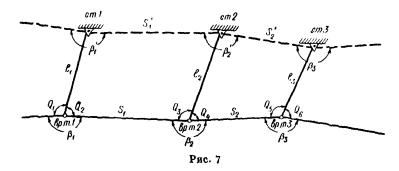
$$h_1 = l \cdot \sin Q_1;$$
 $x_1 = l \cdot \cos Q_1;$ $tg \, \delta_1 = \frac{h_1}{S_1 - x_1};$ $S_1' = \sqrt{(S_1 - x_1)^2 + h_1^2} = \frac{S_1 - x_1}{\cos \delta_1} = (S_1 - x_1) \sec \delta_1;$ $\beta_1' = \beta_1 + \delta_1.$ Правая часть (рис. 6): $h_2 = l \cdot \sin Q_2;$


$$x_2 = l \cdot \cos Q_2;$$

$$\operatorname{tg} \delta_2 = \frac{h_2}{S_2 - x_2};$$

$$S_{2}' = \sqrt{h_{2}^{2} + (S_{2} - x_{2})^{2}} = \frac{S_{2} - x_{2}}{\cos \delta_{2}} = (S_{2} - x_{2}) \sec \delta_{2};$$

$$\beta_{2}' = \beta_{2} - (\delta_{1} + \delta_{2});$$


$$\beta_{3}' = \beta_{3} + \delta_{2}.$$

В уравновешивание сети включают редуцированные элементы жода

В', В', В', В', В', и В',

2-й случай. Ход закреплен стенными знаками (рис. 7).

- В поле измерены:
- 1) по основному ходу β_1 , β_2 , β_3 , S_1 и S_2 ; 2) для переноса координат на стенные знаки

$$Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, l_{16}, l_2, l_3.$$

Необходимо найти значения редуцированных элементов хода В. В. В. В. В. и В.

Для наглядности разделим рис. 7 на две части (рис. 8 и 9) и выполним построения, аналогичные 1-му случаю:

$$h_{1} = l_{1} \cdot \sin Q_{2};$$

$$x_{1} = l_{1} \cos Q_{2};$$

$$h_{2} = l_{2} \sin Q_{3};$$

$$tg \, \delta_{1} = \frac{h_{2} - h_{1}}{S_{1} - x_{1} - x_{2}};$$

$$S'_{1} = \sqrt{(S_{1} - x_{1} - x_{2})^{2} + (h_{2} + h_{1})^{2}} = \frac{S_{1} - x_{1} - x_{2}}{\cos \delta_{1}} =$$

$$= (S_{1} - x_{1} - x_{2}) \sec \delta_{1};$$

$$h_{3} = l_{2} \cdot \sin Q_{4};$$

$$x_{3} = l_{2} \cdot \cos Q_{4};$$

$$h_{4} = l_{3} \cdot \sin Q_{5};$$

$$x_{4} = l_{3} \cdot \cos Q_{5};$$

$$tg \, \delta_{2} = \frac{h_{3} - h_{4}}{S_{2} - x_{3} - x_{4}};$$

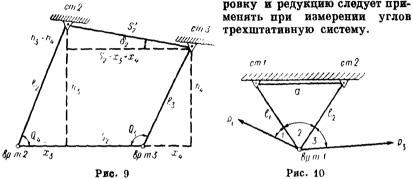
$$S'_{2} = \sqrt{(h_{3} - h_{4})^{2} + (S_{2} - x_{3} - x_{4})^{2}} = (S_{2} - x_{3} - x_{4}) \sec \delta_{2}.$$

$$\frac{\cos \beta}{S_{1} + (h_{3} - h_{4})^{2} + (S_{3} - x_{3} - x_{4})^{2}} = (S_{3} - x_{3} - x_{4}) \sec \delta_{2}.$$

Редуцированный угол

$$\beta_2^* = \beta_2 \pm (\delta_1 + \delta_2).$$

Рис. 8


Здесь знак «+» или «-» зависит от взаимного положения основных и редуцированных линий хода. Для вычисления поправок δ в углы β_4 и β_8 необходимо выполнить аналогичные вычисления для смежных

звеньев хода. Во все измеренные линии вводят соответствующие

поправки.

in V.5. Для более точного получения дирекционных углов сторон хода, закрепленного одинарными стенными знаками, рекомендуется углы Q выдерживать в пределах $88-92^\circ$, а расстояния l от временных точек до центров стенных знаков допускать в пределах 5-15 м.

При таких расстояниях необходимо очень тщательно центрировать теодолит, допуская ошибку не более 1 мм. При более грубом центрировании влияние ошибок за центрировку на величину измеряемого угла резко возрастет. Для уменьшения ошибок за центрировку и редукцию следует при-

IV.6. При измерении углов на временных точках при наличии хорошо определяемых на местности предметов наведения (угол здания, громоотвод, труба, водопроводная башня и др.), находящихся на расстоянии $0.5-1.0~\kappa$ м, если угол между этим предметом и стенным знаком равен $88-92^{\circ}$, необходимо этот предмет включать в измерение углов.

Такие направления в дальнейшем используются при привязке полигонометрии как исходные дирекционные углы, а при наличии в полигонометрической сети более 15 сторон на них определяют дирекционный угол с пунктов триангуляции или астрономическим путем.

В прил. 5 приведен пример 1-й вычисления координат стенных знаков методом редуцирования.

IV.7. Полярный метод можно использовать при передаче координат с временных точек на стенные знаки, установленные в виде одинарных знаков, двойных и тройных систем.

В системе из двух стенных знаков устанавливают их на стене здания (сооружения) с таким расчетом (рис. 10), чтобы расстояние $d_{1,2}$ было примерно равно расстоянию от здания (сооружения) до временной точки. Наличие в двойной системе второго (избыточного) стенного знака позволяет провести контроль полевых измерений и вычислительных работ. Разность между значениями d, полученными из вычислений по координатам стенных знаков и измеренными

в натуре, не должна превышать ± 6 мм в полигонометрии и ± 11 мм в теодолитных ходах.

При вычислении координат стенных знаков в пвойной системе избыточное измерение можно использовать для уравнивания измеренных элементов путем решения по способу наименьших квадратов **v**равнения

 $d^2 = l_1^2 + l_2^2 - 2l_1 l_2 \cos Q_0$

и нахождения поправок в измеренные линии $l_1,\ l_2$ и d и угол O_2 . Точность измерения линий и углов в данном случае определяется из оценки всей сети, и на основании этих данных вводятся веса.

В прил. 5 приведен пример 2-й вычисления координат стенных знаков пвойной системы полярным метолом.

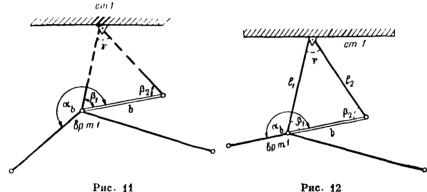


Рис. 12

Организация работ, вычислений и контроля при закреплении пунктов сети системами из трех стенных знаков, предложенных канд. техн. наук С. Н. Марченко, ничем не отличается от организации работ системами с двойными знаками (прил. 5, пример 3-й).

IV.8. Методом угловых засечек можно пользоваться при передаче координат на стенные знаки, установленные в виде одинарных знаков, двойных и тройных систем. Данный метод целесообразно применять, когда непосредственное измерение расстояний от временных точек до центров стенных знаков затруднено интенсивным движением транспорта и пешеходов.

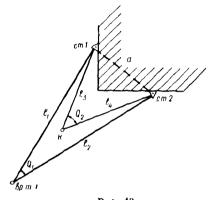
Координаты центров стенных знаков вычисляют методом угловой васечки по формулам (рис. 11):

$$\gamma = 180^{\circ} - (\beta_{1} + \beta_{2});$$

$$l_{\text{Bp. T-CT. 3H}} = -b \frac{\sin \beta_{2}}{\sin \gamma};$$

$$x_{\text{CT. 3H}} = x_{A} \pm l \cos \alpha_{\text{(Bp. T-CT. 3H)}};$$

$$y_{\text{CT. 3H}} = y_{A} \pm l \sin \alpha_{\text{(Bp. T-CT. 3H)}};$$


$$\alpha_{\text{(Bp. T-CT. 3H)}} = \alpha_{b} - \beta.$$

Примеры 4-й и 5-й вычислений приведены в прил. 5.

IV.9. Если стенные знаки двойной системы установлены так, что между ними нельзя измерить расстояние d, то можно использовать два метода.

1-й метод (предложен канд. техн. наук К. А. Лосевым).

В натуре (рис. 12) измеряют базис вр. т. P_3 — створная точка, линии l_4 и l_3 , углы Q_1 , Q_2 , Q_3 , Q_5 , Q_6 , Q_7 . Решают треугольники вр. т. P_3 — ст. 1 — створная т., вр. т. P — ст. 2—ст. 1 т. и вычи-

сляют стороны l'_4 и l'_5 . Полученные значения сравнивают со значениями l_4 и l_3 , измеренными в натуре (контроль). Расхождения не должны быть больше 4 мм.

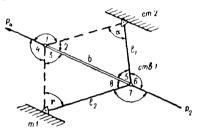


Рис. 13

Рис. 14

Расстояние d вычисляют дважды по формулам

$$d = \frac{l_3 \sin Q_6}{\sin \gamma} = \frac{l_4 \sin Q_2}{\sin \delta},$$

где углы ү и б могут быть определены

$$\operatorname{tg} \gamma = \frac{l_3 \sin Q_6}{l_4 - l_3 \cos Q_6};$$

$$\operatorname{tg} \delta = \frac{l_4 \sin Q_2}{l_2 - l_4 \cos Q_2} \,.$$

В прил. 5 приведен пример 4-й вычислений по указанному методу. 2-й метод.

Выбирают (рис. 13) дополнительную точку K, с которой видны оба стенных знака. В натуре точку K закреплять необязательно. Дополнительно к измеренным расстояниям l_1 , l_2 и углу Q измеряют линии l_3 , l_4 и угол Q_2 .

Неприступное расстояние d вычисляют (для контроля) дважды:

$$\begin{aligned} d_1 &= \sqrt{l_3^2 + l_4^2 - 2l_3l_4\cos Q_2}; \\ d_2 &= \sqrt{(x_1 - x_2)^2 + (y_2 - y_1)^2}. \end{aligned}$$

Разность $d_1 - d_2$ не должна быть больше 8 мм в полигонометрии и 15 мм в теодолитных ходах.

IV.10. При расположении стенных знаков двойной системы на противоположных сторонах улицы (рис. 14) передача координат может быть выполнена следующим образом.

В натуре измеряют базис, разбитый в створе ходовой линии,

угол $Q_{1, 2, 8, 4, 5, 6, 7, 8}$ и для контроля расстояния l_1 и l_2 . Координаты вычисляют по формулам:

где

$$\begin{split} l_1 &= \frac{b \cdot \sin 2}{\sin \alpha} \; ; \; l_2 = \frac{b \sin 3}{\sin \gamma} \; ; \\ \alpha &= 180 - (2+5); \; \gamma = 180 - (3+8); \\ x_{C_1} &= l_{2\text{cp}} \cos \left(\alpha_{P_3 - \text{CTB}_9} - 8\right) + x_{P_3}; \\ y_{C_1} &= l_{2\text{cp}} \sin \left(\alpha_{P_3 - \text{CTB}_9} - 8\right) + y_{P_3}; \\ x_{C_2} &= l_{1\text{cp}} \cos \left(\alpha_{P_3 - \text{CTB}_9} + 5\right) + x_{P_3}; \\ y_{C_3} &= l_{1\text{cp}} \sin \left(\alpha_{P_3 - \text{CTB}_9} + 5\right) + y_{P_3}. \end{split}$$

Пример вычислений по данному методу приведен в прил. 5, пример 5-й.

IV.11. Метод линейной засечки можно применять, если стенные знаки незначительно удалены от временных точек и нет никаких помех для проведения линейных измерений. Координаты центров стенных знаков методом линейной засечки вычисляют по формулам (рис. 15):

$$\cos \gamma = \frac{l_{1}^{2} + l_{2}^{2} - b^{2}}{2l_{1}l_{2}} = \frac{2P(P-b)}{l_{1}l_{2}} - 1,$$

$$P = \frac{l_{1} + l_{2} + b}{2};$$

$$\sin \beta_{1} = \frac{l_{2} \sin \gamma}{b};$$

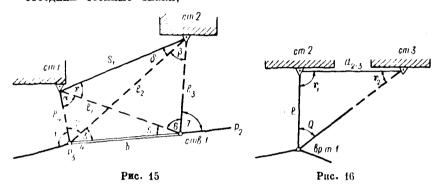
$$\sin \beta_{2} = \frac{l_{1} \sin \gamma}{b};$$

$$\alpha_{(A-\text{ct. 3H})} = \alpha_{b} - \beta;$$

$$x_{\text{ct. 8H}} = x_{\text{Bp. T}} \pm l \cos \alpha_{(\text{Bp. T-ct. 8H})};$$

$$y_{\text{ct. 3H}} = y_{A} \pm l \sin \alpha_{(\text{Bp. T-ct. 3H})}.$$

Пример 6-й вычислений приведен в прил. 5.


IV.12. Привязка полигонометрических и теодолитных ходов к стенным знакам при наличии сохранившихся временных точек осуществляется так же, как и к грунтовым знакам.

Привязка к стенным знакам, образующим одинарные, двойные и тройные ориентирные системы, при утрате временных точек осуществляется способами, приведенными ниже.

IV.13. Привязку к одинарным стенным знакам осуществляют следующим образом:

1) устанавливают инструмент в удобном для дальнейшей работы месте против стенного знака (но не далее 20 м от него) с таким расчетом, чтобы был виден и соседний стенной знак (рис. 16);

2) измеряют расстояние l от инструмента до центра ближайшего стенного знака и угол Q между направлениями на ближайший и на соседний стенные знаки:

вычисляют координаты точки стояния инструмента по формулам:

$$\sin \gamma_2 = \frac{l \cdot \sin Q}{d}; \quad \gamma_1 = 180^{\circ} - (Q + \gamma_2);$$

$$\alpha_{(\text{cr. } 2-\text{Bp. } \bullet)} = \alpha_{(\text{cr. } 2-\text{cr. } 3)} + \gamma_1;$$

$$x_{\text{l.p. } \tau} = x_{\text{cr. } 2} \pm l \cos \alpha_{(\text{cr. } 2-\text{Bp. } \tau)};$$

$$y_{\text{Bp. } \tau} = y_{\text{cr. } 2} \pm l \sin \alpha_{(\text{cr. } 2-\text{Bp. } \tau)};$$

- принимают исходным дирекционным углом для привязываемого хода α_(вр. т. — ст. з), вычисленный по координатам точек вр. т. — ст. 3; ориентирование по линии вр. т. — ст. 2 не допускается ввиду ее малости;
- 5) измеряют линию вр. т. ст. 3 для контроля работ (если позволяют условия местности).

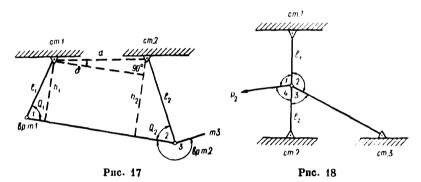
Пример вычисления привязки к одинарным стенным знакам по этому способу приведен в прил. 5, пример 7-й.

- IV.14. Если по условиям местности невозможно выбрать для установки инструмента такое место, с которого видны сразу два одинарных стенных знака, то используют следующий способ:
- 1) выбирают две точки (рис. 17) против стенных знаков с таким расчетом, чтобы углы Q_1 и Q_2 были в пределах $88-92^\circ$, а длины линий l_4 и l_2 не превышали 20 ж;
 - 2) измеряют углы Q_1 и Q_2 линий l_1 и l_2 ;

3) вычисляют координаты точки стояния инструмента по формулам:

$$h_1 = l_1 \cdot \sin Q_1; \ h_2 = l_2 \sin Q_2;$$

$$\sin \delta = \frac{h_2 - h_1}{d}.$$


Пример 8-й вычисления привязки к одинарным стенным знакам по этому способу приведен в прил. 5.

IV.15. Если одинарные стенные знаки расположены на противоположных сторонах улицы, можно использовать способ привязки, предложенный инж. Л. В. Гинзбургом и А. П. Музуруком:

1) устанавливают инструмент методом последовательных при-

ближений в створе стенных знаков (рис. 18);

2) измеряют углы $Q_{1,2,3,4}$ и линии l_1 и l_2 ;

3) вычисляют координаты точки стояния инструмента по фор-

$$tg \alpha = \frac{y_{c_2} - y_{c_1}}{x_{c_2} - x_{c_1}};$$

$$x_{P_1} = x_{c_1} + l_1 \cos \alpha; \ y_{P_1} = y_{c_1} + l_1 \sin \alpha;$$

$$x_{P_1} = x_{c_2} + l_2 \cos (\alpha \pm 180^{\circ});$$

$$y_{P_1} = y_{c_2} + l_2 \sin (\alpha \pm 180^{\circ})$$

и контролируют по C_3 .

мулам:

Пример 9-й вычисления привязки к одинарным стенным знакам

по этому способу приведен в прил. 5. IV.16. Привязку к двойным системам стенных знаков осуществляют следующим образом:

1) устанавливают инструмент в удобном для дальнейшей работы месте против стенного знака на расстоянии, примерно равном величине d, но не далее 20 м (рис. 19);

2) измеряют расстояния l_1 и l_2 от инструмента до центров стенных знаков и угол Q между направлениями на центры марок;

3) вычисляют координаты точки стояния инструмента по фор-

$$\sin \gamma_1 = \frac{l_2 \sin Q}{d}; \quad \sin \gamma_2 = \frac{l_1 \sin Q}{d};$$

$$\gamma_1 + \gamma_2 + Q = 180^{\circ} - \text{контроль};$$

$$d = \sqrt{l_1^2 + l_2^2 - 2l_1 l_2 \cos Q} = d - \text{контроль};$$

$$\alpha_{(\text{ст. 1-вр. т.})} = \alpha_{(\text{ст. 1-ст. 2})} + \gamma_2;$$

$$\alpha_{(\text{ст. 2-вр. т.})} = \alpha_{(\text{ст. 2-ст. 1})} - \gamma_2;$$

$$x_{\text{пр. т.}} = x_{\text{ст. 1}} \pm l_1 \cos \alpha_{(\text{ст. 1-вр. т.})} = x_{\text{ст. 2}} \pm l_2 \cos \alpha_{(\text{ст. 2-вр. т.})};$$

$$y_{\text{пр. т}} = y_{\text{ст. 1}} \pm l_1 \sin \alpha_{(\text{ст. 1-вр. т.})} = y_{\text{ст. 2}} \pm l_2 \sin \alpha_{(\text{ст. 2-вр. т.})};$$

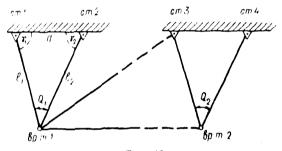
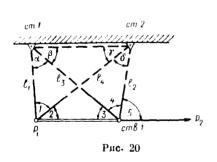
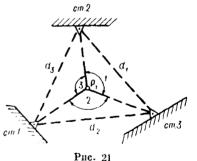


Рис. 19

4) исходным дирекционным углом для привязываемого хода должно служить α вр. т. ст. 3, вычисленное по координатам точек вр. т. ст. 3;


5) если из точки вр. т. 1 нет видимости на стенные знаки соседнего пункта хода, то описанным выше способом определяют координаты точки вр. т. 2, а ориентирование привязываемого хода производят по линии вр. т. 1 — вр. т. 2; пример 10-й вычисления привязки по этому способу приведен в прил. 5.


IV.17. Привязку к двойным стенным знакам можно производить также путем приближенного уравнивания, в случае привязки теодолитного хода путем уравнивания треугольника $C_2C_3P_2$ по двум сторонам и углу 2, принимая за неизменную сторону между стенными знаками (пример 11-й, прил. 5).

IV.18. Если по условиям местности непосредственное измерение расстояний от инструмента до центров стенных знаков затруднено (например, из-за ведения в этой зоне земляных работ), то привязку к двойной системе стенных знаков можно выполнить способом угловой засечки с условным базисом:

- 1) параллельно зданию, на котором установлены стенные знаки, разбивают базис; длину базиса принимают примерно равной расстоянию d, расстояние от здания до базиса также выбирают примерно равным величине d (рис. 20);
 - 2) измеряют углы $Q_1, 2, 3, 4, 5$;
- вычисляют координаты точки стояния инструмента по формулам:

$$\begin{split} l_1 &= \frac{b \sin 3}{\sin \alpha} \; ; \; l_2 = \frac{b \sin 2}{\sin \delta} \; ; \\ l_3 &= \frac{b \sin (1+2)}{\sin \alpha} \; ; \; l_4 = \frac{b \sin (3+4)}{\sin \delta} \; ; \\ a + b \sin (180^\circ + 1 + 2) + l_2 \sin (1 + 2 + 3 + 4) = \Delta y ; \\ l_1 + b \cos (180^\circ + 1 + 2) + l_2 \cos (1 + 2 + 3 + 4) = \Delta x ; \\ \text{tg } \phi &= \frac{\Delta y}{\Delta x} \; ; \; d' = \frac{\Delta y}{\sin \phi} = \frac{\Delta x}{\cos \phi} \; ; \\ d' &= \frac{l_2 \sin 4}{\sin \beta} = \frac{l_1 \sin 1}{\sin \gamma} \; ; \\ \frac{d}{d'} &= k ; \; \beta + \gamma = 180^\circ - (2 + 3) = A ; \\ l_2 \sin 4 &= f ; \; l_1 \sin 1 = g ; \\ \sin A \cot g \gamma - \cos A &= \frac{f}{g} \; ; \; \text{tg } \gamma = \frac{\sin A}{\frac{f}{g} + \cos A} \; . \end{split}$$

Пример 12-й вычисления привязки по этому способу приведен в прил. 5.

IV.19. Способы привязки к тройным системам стенных знаков аналогичны способам привязки к двойным системам.

Пример 13-й вычисления такой привязки приведен в прил. 5. IV.20. К трем или четырем одинарным стенным знакам, установленным на противоположных углах кварталов на перекрестке улиц, привязку можно осуществить по способу, предложенному инженером Ю. С. Хмелевским (рис. 21):

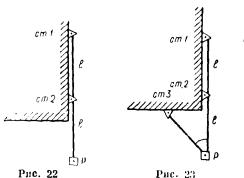
 P_1 — инструмент;

измеряют углы 1, 2, 3;

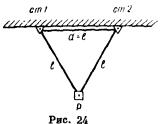
2) вычисляют координаты точки стояния инструмента по формулам:

$$x_{P_1} = \frac{P_{c_1}x_{c_1} + P_{c_2}x_{c_2} + P_{c_3}x_{c_3}}{P_{c_1} + P_{c_2} + P_{c_3}};$$

$$y_{P_1} = \frac{P_{c_1}y_{c_1} + P_{c_2}y_{c_2} + P_{c_3}y_{c_3}}{P_{c_1} + P_{c_2} + P_{c_3}};$$


$$P_{c_1} = \frac{1}{\operatorname{ctg} C_1 - \operatorname{ctg} 1}; P_{c_2} = \frac{1}{\operatorname{ctg} C_2 - \operatorname{ctg} 2};$$

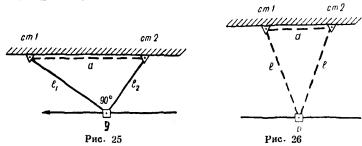
$$P_{c_3} = \frac{1}{\operatorname{ctg} C_3 - \operatorname{ctg} 3}.$$


Пример вычисления привязки к одинарным стенным знакам по этому способу приведен в прил. 5, пример 14-й.

2. ВОССТАНОВИТЕЛЬНЫЕ СИСТЕМЫ СТЕННЫХ ЗНАКОВ

IV.21. Восстановительные системы, которые могут состоять из двух или трех стенных знаков, изображенных на рис. 1 и 2, отличаются от ориентирных систем тем, что рабочие центры, на которых

выполняют угловые и линейные измерения полигонометрических или теодолитных ходов, могут


быть при привязке повых ходов к стенным знакам восстановлены по тем же элементам, по которым они определялись.

IV.22. Створно-восстановительная система, предложенная инж. А. И. Марчуком, представляет собой два стенных знака, установленных на расстоянии l один от другого (рис. 22). Рабочий центр устанавливают в створе центров этих знаков на расстоянии l от крайнего знака. Восстановление утраченного рабочего центра производят так же, как и первоначальную установку, т. е. в створе стенных знаков на расстоянии l от них.

IV.23. Створно-восстановительная система с дополнительным контролем, предложенная инж. Ю. В. Мулюном (рис. 23), отличается

от предыдущей системы А. И. Марчука наличием третьего стенного знака, установленного так, чтобы направление на него с рабочего центра образовало с основным створом угол не менее 30°. Дополнительное направление служит контролем при восстановлении рабочего центра.

IV.24. Система равностороннего треугольника, предложенная инж. П. Ф. Дегтяревым, представляет собой два стенных знака, установленных с таким расчетом, чтобы расстояние между ними было равно расстояниям от центров стенных знаков до рабочего центра (рис. 24).

Восстановление утраченного рабочего центра осуществляют линейной засечкой, в которой стороны равны расстоянию между центрами стенных знаков.

IV.25. Система прямоугольного треугольника представляет собой два стенных знака, с которых рабочий центр определяют и восстанавливают при утрате линейной засечки с неравными сторонами, образующими при пересечении угол 90° (рис. 25).

IV.26. Система равнобедренного треугольника, предложенная инж. Э. К. Хускевадзе, состоит из двух стенных знаков. Рабочий центр определяют и восстанавливают линейной засечкой с равными сторонами (рис. 26).

Для установки и восстановления рабочего центра при этой системе удобно пользоваться приспособлением, состоящим из двух равных по длине проволок, скрепленных кольцом. Свободные концы проволок удерживают шпильками у центров стенных знаков, а тонкая вешка, вставленная в скрепляющее проволоки кольцо, фиксирует центр восстанавливаемого знака (при горизонтальном положении проволок). Длины проволок в этом приспособлении должны быть не более 3—5 м. Натяжение производят от руки.

V. ТОЧНОСТЬ РАБОТ ПРИ КООРДИНИРОВАНИИ СТЕННЫХ ЗНАКОВ И ПРИВЯЗКЕ К НИМ

V.1. Измерения для передачи координат с временных точек на центры стенных знаков (при ориентированных системах) выполняют с суммарной средней квадратической ошибкой ± 2 мм во всех разрядах полигонометрии и ± 4 мм в теодолитных холах

- V.2. Для обеспечения контроля независимо от выбранного метода передачи координат необходимо производить избыточное число измерений.
- V. 3. Измерения по снесению координат с центров стенных знаков на рабочие центры при восстановительных системах выполняют с суммарной средней квадратической ошибкой ± 3 мм при привязке полигонометрических ходов и ± 6 мм при привязке теодолитных ходов.
- V.4. При измерениях для передачи координат на центры стенных знаков инструмент на временной точке должен центрироваться со средней квадратической ошибкой ± 1 мм в полигонометрии и ± 2 мм в теодолитных ходах, для чего необходимо использовать оптические отвесы и лотаппараты.
- V.5. Углы поворотов хода и углы на стенные знаки (полярные углы или углы засечки) следует измерять так, чтобы избежать частой перефокусировки визирной трубы теодолита. Порядок наблюдений может быть, например, такой:
 - 1) задняя точка хода:
 - 2) передняя точка хода;
 - 3) стенные знаки (один, два или три).

При другом круге измерения начинают со стенных знаков:

- 1) стенные знаки (один, два или три);
- 2) передняя точка хода;
- 3) задняя точка хода.

При измерении углов на узловой точке необходимо для контроля производить замыкание горизонта.

- V.6. Полярные расстояния или расстояния линейных засечек измеряют стальной рулеткой с натяжением ее от руки, если линия не более 10 м, и при помощи динамометра с силой 10 кг, если линия больше 10 м.
- V.7. В измеренные расстояния вводят поправки за компарирование рулетки, за температуру и наклон линии.

Компарирование рулетки проводят на плоскости (на полевом компараторе или женевской линейкой), а если на полевом компараторе при измерениях рулетка находится в подвешенном состоянии, то в измеренные длины линий вводят поправки за провес рулетки:

$$npn \ l = 10 \ m;$$
 $nposec = -0.1 \ mm;$
 $n \ l = 15 \ m;$
 $n \ m = -0.2 \ mm;$
 $n \ l = 20 \ m;$
 $n \ m = -0.5 \ mm.$

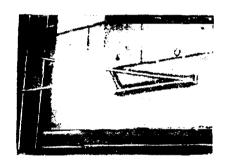
Температуру воздуха в момент измерения (для введения поправки в измеренную линию) необходимо знать с ошибкой не более 2° , что можно сделать при помощи обыкновенного термометра.

Превышение между концами рулетки следует определять методами геометрического или геодезического нивелирования.

При этом ошибка не должна превышать 4—5 мм. Если позволяют условия измерения, можно избежать измерения превышения и введения поправки за нее, а измерять сразу горизонтальное проложе-

ние линии. Для этого надо определить наименьшый отсчет по рулетке, наблюдаемый в оптический отвес теодолита.

Линии рекомендуется измерять в безветренную погоду. В исключительных случаях допускаются измерения при скорости ветра не более 10 м/сек.


- V.8. Уравновешивание ходов, закрепленных стенными знаками, можно выполнить двумя способами.
- 1. Уравновешивают результаты измерений по временным точкам в обычном порядке. Уравновешенные значения координат с временных точек передают на центры стенных знаков. Достоинство этого способа в простоте камеральной обработки результатов измерений. Недостаток в том, что уравновещивание результатов измерений ходов и передачи координат на стенные знаки выполняется раздельно.
- 2. Углы и линии, измеренные в ходах по временным точкам, редуцируют на центры стенных знаков. Затем производят уравновешивание редуцированной сети в обычном порядке.
- В этом случае производят контрольные вычисления (второй руки) по вспомогательным точкам, и сумма приращений между грунтовыми знаками должна быть одна и та же в пределах точности вычислений.
- V.9. Опыт выполнения полевых работ с использованием стенных знаков показал, что часто временные точки, по которым производились основные измерения, некоторое время сохраняются и можно их использовать при съемочных работах. Поэтому при составлении каталогов координат рекомендуется включать в них не только координаты центров стенных знаков, но и координаты временных точек.

Кроме того, в каталог рекомендуется помещать значения горизонтальных проложений линии при засечках с тем, чтобы их можно было использовать для «восстановления» временных точек с точностью 2—3 см, достаточной для съемочных работ. Образец заполнения каталога координат приведен в прил. 6.

Консольные (штанговые) стенные знаки

1. Стенной знак конструкции Н. Н. Лебедева

Этот знак (рис. 27) представляет собой металлическую коробку длиной 52 см, высотой 5 см, глубиной 4 см, прикрепленную к стене на высоте 2 м от земли. Коробка имеет крышку и запирается замком. Внутри коробки на шар-

Puc. 27

нирах крепятся две штанги длиной по 45 см каждая, изготовленные из уголкового железа. Выдвинутые из коробки штанги скрепляются свободными концами третьей дополнительной штангой. На конце штанги имеется отверстие диаметром 2 мм, которое является центром знака и проектируется лотаппаратом или теололитом с трех установок инструмента на рабочий центр. При утрате рабочего центра для привязки к такому знаку нужно открыть крышку знака, смонтировать штанги, снести центр знака на восстанавливаемый рабочий центр. При привязке теодолитного хода проектирование может выполняться при помощи нитяного отвеса.

2. Стенной знак конструкции Н. Н. Лебедева (модификация)

Стенной знак представляет собой такую же, как в предыдущей конструкции, коробку, внутри которой имеется планка с тремя отверстиями. К этой планке болтами крепится штанга длиной около 1 ж. Отверстие на конце штанги служит центром знака.

Привязка к знаку выполняется так же, как в п. 1.

Pnc. 28

3. Стенной знак конструкции И. А. Анисимова

Знак представляет собой чугунную или стальную марку, забетонированную в степе здания на высоте около 2 м от земли. На лицевой стороне марки имеются

в стене здания на высоте около 2 м от земли пазы (рис. 29), к которым крепится переносная штанга длиной около 1 м, изготовленная из уголкового железа (рис. 30). Отверстие на конце штанги служит центром знака. Для использования знака необходимо обратиться в организацию, в которой хранятся переносные штанги. Способ привязки такой же, как в п. 1.

4. Стенной знак конструкции К. И. Зимина

Знак представляет собой две переносные штанги длиной около 1 ж каждая (рис. 31), скрепленные между собой шарниром. Отверстие в шарнире служит центром знака. Штанги крепятся к двум пет-

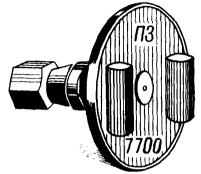


Рис. 29

лям, вбетонированным в стену здания. Способ привязки к знаку такой же, как показано в п. 1.

Рис. 30

5. Стенной знак конструкции В. Н. Корнева

Знак (рис. 32) представляет собой чугунную или стальную марку, забетонированную в стену здания. В имеющееся в марке отверстие вставляют переносную дюралюминиевую штангу длиной 2 ж. Отверстие на конце штанги служит центром знака. Используется знак так же, как указано в п. 1.

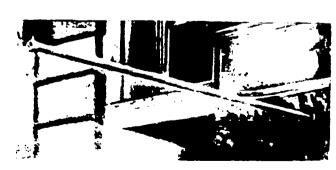


Рис. 31

Рис. 32

приложение 2

Согласовано:

Главный архитектор города (района)

/полиись	TOTOME)	 •

Список мест установки стенных геодезических знаков

М по пор.	Название улиц и номера домов	Типы знаков	Примечания
		_	
		-[
Perori	носцировку провел и список сост	авил	
	(должность, фамили		· · · · · · · · · · · · · · · · · · ·

приложение з

Кроки привязки стенных знаков

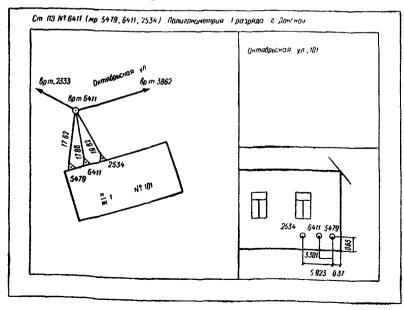


Рис. 33

				11 1	P M JI (OMEHNE 4
		Aĸ	т №			
о сда	че геодези	ческих зна	аков на н	аблюдение	за с	охраннос тью
я.	нижеполнис	авшийся, ——				
71,	шинонодино				(NMH, O	отчество, фамилия
сдатчик	а, должность,	название учреж	кления, адрес)			
на осн	овании Пос	гановлени я (Совета Мини	стров СССР	сдал	на наблюден ие
за сох	ранностью и	я, нижепо,	димсавшийся	, 	·	
	(фамили	я, имя, отчеств	о, должность	принявшего, уч	режден	ие)
					пкни	на наблюдение
sa cox	ранностью г	еодез ич еские	знаки, распо	ложенные		
	(vkaaa)	Th MacTOHOROWA	nge anaron, na	селенный пунк	T VILLE	u)
В				•		на наблюдение
обязан	немедленно	сообщить в	Территори	альную инсп	екцию	Госгеонадзора
по адр	ecy				<u></u>	
					·	
				ве	-	
Aĸ	т составлен_			» дня 19	год	ца в количеств е
трех эт	каемпляров,	из которых о	дин хранитс	я		(учреждение,
адрес)						
	вручен					
	• •	(NMH, O	_	идоввиоди	-	•
_	-		-		-	Главного упра-
вления	геодевии и	картографии.				(адрес
	ГУГК)					
(Сдал	(HORTHWEE)	Прі	инял(nonnua	
	· ·	(1101(111100)		,	иодильсь	2)
			II	риложение к	акту	<i>M</i>
				соаче геобевич ние ва сохран		наков на наблю- о
			C			
			Список			_
стенн	ых знаков	, установл	енных в і	`•		области
N	Номера	Типы систем	Номера	Конструкти		Местоположение
по пор.	пунктов сети	стенных знаков	стенных знаков	типы стенн энаков		стенных знаков
	<u> </u>	<u>'</u>	<u> </u>	i		

Принял-

(подпись, печать

Сдал (подпись, печать)

_	_
•,	7
_	

Примеры вычи

Передача координат на одинарные сте

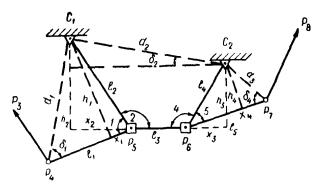


Рис. 34

Определяемые

Вычисление

Формулы:
$$h_1 = l_2 \cdot \sin 1$$
; $x_1 = l_2 \cdot \cos 1$; $h_2 = l_2 \cdot \sin (180^{\circ} - \angle 2) = l_2 \cdot \sin \alpha$ $x_4 = l_4 \cdot \cos 5$; d_3 $tg \ \delta_1 = \frac{h_1}{l_1 - x_1}$; $tg \ \delta_4 = \frac{h_4}{l_5 - x_4}$; $tg \ \delta_2 = \frac{h_2 - h_3}{l_3 + x_3 + x_2}$;

Обозна- чения	Величины	Обозна- чения	Величины	Обозна- чения	Величины	Обовна- чения	
$ \begin{array}{c} $	87° 13′ 52″ 0,998832 0,048307 13,433 13,417 0,649	$egin{array}{c} lpha \ \sinlpha \ \coslpha \ l_2 \ h_2 \ x_2 \end{array}$	80° 00′ 05″ 0,984812 0,173624 13,433 13,229 2,332	$\begin{array}{c} \beta \\ \sin \beta \\ \cos \beta \\ l_4 \\ h_3 \\ x_3 \end{array}$	87° 41′ 15″ 0,999186 0,040350 10,847 10,838 0,438	\(\sum_{5} \) \(\sin 5 \) \(\cos 5 \) \(l_4 \) \(h_4 \) \(x_4 \)	
							_

Вычисление

Название пунктов	Дирекционные направления	Стороны S в ж (горизонтальные расстояния)
$P_{4} \\ C_{1} \\ C_{2} \\ P_{7}$	171 ⁹ 03′ 17″ 183 53 51 179 16 57	157,068 192,130 216,395

слений (1-14)

Пример 1-й

нные знаки методом редуцирования

Исходные данные

Пункты	X	Y	Дирекционные направления	Стороны
$egin{array}{c} P_4 \ P_5 \end{array}$	—4718 ,343	+17344,817	175 ⁹ 57′ 18″	157,143
$P_6 P_7$	— 5281,565	+17358,891	183 11 05 176 26 42	189,345 217 837

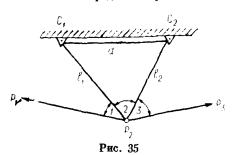
Измерено:

$$\angle 1 = 87^{\circ} \ 13' \ 52''$$
 $\angle 4 = 92 \ 18 \ 45$
 $l_2 = 13,433$
 $\angle 2 = 99^{\circ} \ 59' \ 55''$
 $\angle 5 = 80 \ 56 \ 52$
 $l_4 = 10,847$

пункты C_1 и C_2

редукций

$$x_2 = l_2 \cdot \cos \alpha$$
; $h_3 = l_4 \cdot \sin (180^\circ - \angle 4) = l_4 \cdot \sin \beta$; $x_3 = l_4 \cdot \cos \beta$; $h_4 = l_4 \cdot \sin 5$; $= (l_5 - x_4) \sec \delta_4$;


$$d_1 = (l_1 - x_1) \sec \delta_1; \ d_2 = (l_3 + x_2 + x_3) \sec \delta_2$$

Величины	Обовна- чения	Величины	Обозначения	Вел ич ины	Обозна- чения	Величины
80° 56′ 52″ 0,987546 0,157334 10,847 10,712 1,707	$\begin{array}{c} l_1\\x_1\\l_1-x_1\\tg\delta_1\\\delta_1\\\sec\delta_1\end{array}$	157,143 0,649 156,496 0,085735 4° 54′ 01″ 1,003669	$egin{array}{c} l_3 \\ h_2 - h_3 \\ l_3 + x_2 + x_3 \\ \operatorname{tg} \delta_2 \\ \delta_2 \\ \operatorname{sec} \delta_2 \end{array}$	189,345 2,391 192,115 0,012446 0° 42′ 46″ 1,000077	l_5 x_4 $l_5 - x_4$ $tg \delta_4$ δ_4 $sec \delta_4$	217,837 1,767 216,130 0,049563 2° 50′ 15″ 1,001227
	d_1	157,068	d_{2}	192,130	d_3	216,395

координат

Δα	Δυ	х	Y	Название пунктов
-155,158 -191,686 -216,378	+24,423 13,059 +2,710	4718,343 4873,501 5065,187 5281,565	+17344,817 +17369,240 +17356,181 +17358,891	$egin{array}{c} P_4 & & & & \\ C_1 & & & & \\ C_2 & & & & \\ P_7 & & & & \end{array}$

Передача координат на центры двух стенных знаков полярным методом (строгий способ)

Исходные данные:

$$X_{P_2} = 1147,141$$
 $Y_{P_2} = 817,437$ $\alpha_{P_2-P_3} = 278^{\circ} 14' 18''$ $Y_{P_3} = 817,437$ $Y_{P_3} = 817,437$

Измерено:

$$\angle 1 = 18^{\circ} 14' 15''$$
 $l_1 = 16,6800$
 $\angle 2 = 64 13 11$ $l_2 = 17,4350$
 $\angle 3 = 106 55 35$ $d = 18,1430$

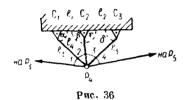
Определяемые пункты C_1 и C_2

Формулы: $d^2 = l_1^2 + l_2^2 - 2l_1l_2\cos 2$; $(l_1 - l_2\cos 2) \Delta l_1 + (l_2 - l_1\cos 2) \Delta l_2 - d \cdot \Delta d + l_1 \cdot l_2 \cdot \sin 2\Delta 2 + \frac{f}{2} = 0$.

Обозначения	Величи- ны	Обозначения	Величи- ны	Обозначения	Величи-		Величины		Обозна-	Величи-
					ны	Обозначения	<i>до</i> уравнивания	после уравнивания	чения	ны
l_1 $l_2 \cos 2$ $l_1 - l_2 \cos 2$	16,680 7,583 9,097	l_2 $l_1 \cos 2$ $l_2 - l_1 \cos 2$	17,435 7,254 10,181	$\begin{array}{c} l_1 l_2 \\ \sin 2 \\ l_1 l_2 \sin 2 \\ \underline{l_1 l_2 \sin 2} \\ \rho \end{array}$	290,816 0,900468 261,870 1,269	$egin{array}{c} l_1^2 \\ l_2^2 \\ -2l_1l_2\cos 2 \\ d_f^2 \\ f \end{array}$	278,2224 303,9792 -252,9640 +329,1684 +0,0692	278,20339 303,95621 —252,94807 329,21063 —0,00010	$(m_3'')^2 \ (m_s)^2 \ 1/P^2$	100,0 6,25 1/16.00

Таблица условных уравнений и поправок

Решение треугольников


Обозна- чение	а	ga P	1/P	Поправка	Pv²	Название вершин	Уравненные углы	Синусы	Уравненные стороны
$egin{array}{c} v_2 \\ v_3 \\ v_{l_s} \\ v_d \end{array}$	+1,269 +9,097 +10,181 -18,143	25,766 82,755 103,653 329,168 541,342	16,00 1 1 1	-1",30 -0 ,58 -0 ,65 +1,16	1,09 0,34 0 42 1,35 3,17	C ₁ C ₂ P ₂	59° 54′ 36″,4 55 52 14,5 64 13 09,7	0,865238 0,827773 0,960465	17,43434 16,67943 18,14416 20,14976

 $541,34 \cdot K_1 + 34,6 = 0, K_1 = -0,0639$

Вычисление координат

Название пунктов	Дирекционные направления	Стороны 8 в м (горивонтальные расстояния)	Δχ	Δy	X	У	Название пунктов
P ₂ C ₁ C ₂ P ₂	171° 18′ 43″ 291 24 07 55 31 52	16,67943 18,14416 17,43434	16,4880 +-6,6209 +-9,8671	+2,5195 -16,8930 +14,3735	+1147,141 +1130,6530 +1137,2739 +1147,141	+817,437 +819,956 +803,0635 +817,437	$egin{array}{c} P_2 \\ C_1 \\ C_2 \\ P_2 \end{array}$

Передача координат на систему трех стенных знаков полярным методом

Исходные данные:

$$X_{P_4} = 5348,174$$

 $Y_{P_4} = 2465,485$

$$\alpha_{P_3-P_4} = 178^{\circ} 13' 51''$$

$$\alpha_{P_4-P_4} = 197 36 24$$

Измерено:

$$\angle$$
 1 = 44° 13′ 37° l_1 = 7,931 \angle 2 = 31 45 13 l_2 = 11,291

$$\angle 3 = 41 \quad 17 \quad 38$$
 $l_3 = 15,070$ $\angle 4 = 82 \quad 06 \quad 05$ $l_4 = 12.830$

$$4 = 82 \ 06 \ 05$$
 $l_4 = 12,830$

 $l_5 = 17.110$

Определяемые пункты C_1 , C_2 , C_3

Формулы:
$$\cos \gamma = \frac{l_4 - l_5 \cos 3}{l_2}$$
; $\cos \beta = \frac{l_4 - l_3 \cos 2}{l_1}$.

Определение углов у и В

Обозначения	Величин ы	Обоз нач ения	Величины		
$\cos 3$ l_4 $l_5 \cos 3$ $l_4 - l_5 \cos 3$ $\cos \gamma$ γ δ	0,751334 12,830 12,855 —0,025 —0,002241 90° 07′ 42″ 48° 34′ 40″	$ \begin{array}{c} \cos 2 \\ l_4 \\ l_3 \cdot \cos 2 \\ l_4 - l_3 \cdot \cos 2 \\ \cos \beta \\ \beta \\ \alpha \end{array} $	0,850319 12,830 12,814 0,0157 0,001980 89° 53′ 12″ 58° 21′ 35″		

Вычисление координат

	Название п унк тов	Дирекционные направления	Стороны S в ж (горизонтальные расстояния)	Δx	Δυ	X	Y	Название пунктов
3	P ₃ P ₄ C ₁ C ₂ C ₃ P ₄ P ₅	178° 13′ 51″ 42 27 28 164 05 53 164 04 59 295 30 19 197 36 24	15,070 7,931 11,291 17,110	+11,118 -7,627 -10,858 +7,367	+10,173 +2,173 +3,096 -15,443	+5348,174 +5359,292 +5351,665 +5340,807 +5348,174	+2465,485 $+2475,658$ $+2477,831$ $+2480,927$ $+2465,485$	P ₃ P ₄ C ₁ C ₂ C ₃ P ₄ P ₅

Вычисление координат центров двух стенных знаков методом угловой засечки (при помощи базиса)

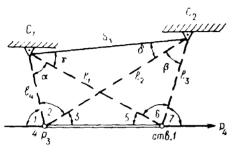


Рис. 37

Исходные данные:

$$X_{P_1} = 430,411$$
 $Y_{P_1} = 140,952$ $X_{CTB} = 448,423$ $Y_{CTB} = 176,802$ $\alpha_{P_3,CTB} = 63^{\circ} 19' 30''$ $b = 40,120$

Иамерено:

$$\angle 1 = 78^{\circ} 54' 54''$$
 $\angle 5 = 24^{\circ} 06' 06''$
 $\angle 2 = 73 55 06$
 $\angle 6 = 74 51 36$
 $\angle 3 = 37 10 00$
 $\angle 7 = 81 02 18$
 $\angle 4 = 180 00 00$
 $S_1 = 55,443$

Определяемые пункты C_1 и C_2

Формулы:
$$\operatorname{tg} \gamma = \frac{l_3 \cdot \sin 6}{l_4 - l_3 \cos 6}$$
; $\operatorname{tg} \delta = \frac{l_4 \cdot \sin 2}{l_2 - l_4 \cos 2}$; $S_1 = \frac{l_3 \cdot \sin 6}{\sin \gamma}$; $S_1 = \frac{l_4 \cdot \sin 2}{\sin \delta}$.

Решение треугольников

Название углов	Углы	sín	Стороны в м	Стороны	Название углов	Углы	sin	Стороны в м	Название сторон
2 + 3 5	44° 48′ 48″ 111 05 06 24 06 06 180 00 00	0,70 481 0,93 3 05 0,40 83 5	40,120 53,112 23,245	b l ₁ l ₄	5+6 3	43° 52′ 18″ 98 57 42 37 10 00 180° 00′ 00″	0,69304 0,98779 0, 6041 4	40,120 57,183 34,974	$egin{array}{c} b \ l_2 \ l_3 \end{array}$

Вычисление γ , δ , S_1

Обозначения	Величины	Обозначения	Величины	Обозначения	Величины	Обозначения	Величины
$l_3 \cdot \sin 6$ $\sin 6$ l_3 $\cos 6$ l_1 $l_3 \cos 6$	33,7600 0,96529 34,974 0,26118 53,112 9,1345	$l_1 - l_3 \cos 6$ $tg \gamma$ γ $\sin \gamma$ S_1	43,9785 0,76765 37° 30′ 42″ 0,60892 55,442	$egin{array}{c} l_{f 4} \sin 2 & & \\ \sin 2 & & \\ l_{f 4} & & \\ \cos 2 & & \\ l_{f 2} & & \\ l_{f 4} \cos 2 & & \\ \end{array}$	22,3354 0,96087 23,245 0,27701 57,183 6,4391	$egin{array}{c} d_2-d_4\cos2\ \mathbf{tg}\delta\ \delta\ \sin\delta\ S_1 \end{array}$	50,7439 0,44016 23° 45′ 26″ 0,40286 55,442

Вычисление координат

	Названия пунктов	Дирекционные направления	Стороны S в м (горизонтальные расстояния)	Δα	Δυ	X	Y	Названия пунктов
35	$egin{array}{c} P_3 & & & & & & & & & & & & & & & & & & &$	312° 14′ 24″ 342 17 12 49 54 54	23,245 34,974 55,442	+15,625 +33,318 +35,702	-17,207 $10,641$ $+42,418$	+430,411 +446,036 +448,423 +481,741 +446,036 +481,738	+140,952 +123,745 +176,802 +166,161 +123,745 +166,163	$egin{array}{c} P_3 & & & & & & & & & & & & & & & & & & &$

Передача координат на центры двух стенных знаков, расположенных на противоположных сторонах улицы

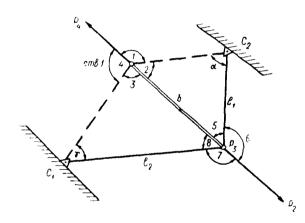


Рис. 38

Исходные данные:

$$X_{P_3} = 381,450$$
 $Y_{P_3} = 372,990$ $\alpha_{P_4 - P_4} = 310^{\circ} 28' 30''$ $b = 27,180$

Измерено:

$$\angle 1 = 120^{\circ} 44' 24'' \quad \angle 6 = 136^{\circ} 54' 12''$$
 $\angle 2 = 59 \quad 15 \quad 36 \quad \angle 7 = 115 \quad 26 \quad 00$
 $\angle 3 = 51 \quad 10 \quad 30 \quad \angle 8 = 64 \quad 34 \quad 00$
 $\angle 4 = 128 \quad 49 \quad 30 \quad l_1 = 23,913$
 $\angle 5 = 43 \quad 05 \quad 48 \quad l_2 = 23,510$

Решение треугольников

Название углов	У	глы	sin	Стороны г, вычи- сленные в ж	Название сторон	Стороны l, измерен- ные в м	Название углов	Yr.	1Ы	sin	Стороны l, вычи- сленные в м	Название сторон	Стороны l, измерен- ные в м
2 a 5	77 43	15′ 36″ 38 36 05 48 00 00	0, 85949 5 0,976834 0,6 8 3232	27,180	l ₁ b	23,913	3 Y 8	64 1 64 3	0′ 30″ 5 30 4 00 0 00	0,779064 0,900761 0,903086	23,507 27,180 27,250	l ₂ b	23,510
На з в пун		Дирекц направ	BOHRE //	Стороны S в горизонталь расстояния	ные	Δχ		Δy		x	Y		(азвание гунктов
c	3 12 3 3 8 1	130° 2 353 3 245 5 310 2 71 1 181 3	4 1 8 4 30 8 30 2 54	23,914 23,508 27,180 19,011 27,250	+	23,764 -9,596 -17,643 +6,122 -27,239	-2 -2 +1	2,677 21,460 20,676 17,918 -0,785	+4 +3 +3 +3 +3 +4	81,450 05,214 71,854 81,450 99,093 05,215 71,854	+372,9 +370,3 +351,5 +372,9 +352,3 +370,3 +351,5	13 30 90 14 12	P ₄ P ₃ C ₂ C ₁ P ₃ CTB 1 C ₂ C ₁

Вычисление координат стенного знака методом линейной засечки

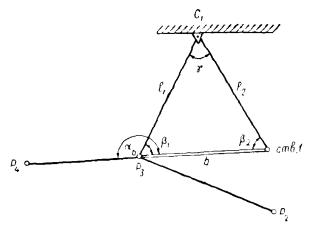


Рис. 39

Определяемый пункт C_1

Вычисления

1. Вычисляют значения углов β_1 , β_2 и γ .

Первый способ:
$$\cos \gamma = \frac{l_1^2 + l_2^2 - b^2}{2l_1l_2}$$
; $\sin \beta_1 = \frac{l_2 \sin \gamma}{b}$; $\sin \beta_2 = \frac{l_1 \sin \gamma}{b}$.

Обозначения	Величины	О бо значения	Величины	Обозначения	Величины
12 12 b2	29,496 45,617 63,696	$rac{l_2}{\sin\gamma}$	6,754 0,987818 7,981	$\begin{array}{c} l_1\\ \sin\gamma\\ b\end{array}$	5,431 0,987818 7,981

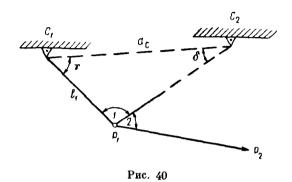
Исходиме данные:

$$X_{P_3} = 4575,242$$
 $Y_{P_3} = +2180,753$ $\alpha_{P_3-P_4} = 267^{\circ} 32' 24''$

Измерено:

$$l_1 = 5,431$$

 $l_2 = 6,754$
 $b = 7,981$
 $\alpha_b = 180^{\circ} 00' 00''$


$\frac{2l_1l_2}{\cos\gamma}$	73,362 0,155611	$\sin\beta_1\\\beta_1$	0, 83 5951 56° 42′ 54″	$\sin\beta_2\\\beta_2$	0.672201 42° 14′ 14″
γ	81° 02′ 52″		Контроль: ү+р	$\beta_1 + \beta_2 = 180^{\circ} \ 00' \ 00''$	

Второй способ:
$$\cos \beta_1 = \frac{2P(P-l_2)}{l_1b} - 1$$
; $\cos \beta_2 = \frac{2P(P-l_1)}{bl_2} - 1$; $\cos \gamma = \frac{2P(P-b)}{l_1l_2} - 1$; $P = \frac{l_1 + l_2 + b}{2}$.

Обозначения	Величины	Обозначения	Величины	Обозначения	Величины	Обозначения	Величины
$ \begin{array}{c c} 2P \\ P \\ P-l_1 \\ P-b \\ P-l_2 \end{array} $	20,166 10,083 4,652 2,102 3,329	$ \begin{array}{c} 2 P (P - l_2) \\ l_1 b \\ 2 P (P - l_2) \\ l_1 b \\ \cos \beta_1 \\ \beta_1 \end{array} $	67,133 43,345 1,548806 0,548806 56° 42′ 54*	$2P (P-l_1) \ l_2 \cdot b \ 2P_{\bullet}(P-l_1) \ l_2 \cdot b \ \cos \beta_2 \ \beta_2$	93 812 53,904 1,740368 0,740368 42° 14′ 14″ $\beta_1 + \beta_2 + \gamma = 18$	$ \begin{array}{c c} 2P (P-b) \\ l_1 l_2 \\ 2P (P-b) \\ l_1 l_2 \\ \cos \gamma \\ \gamma \end{array} $ $ \begin{array}{c} 0^2 \ 00' \ 00'' \end{array} $	42,389 36,681 1,155612 0,155612 81° 02′ 52″

Название пунктов	Дирекционные направления	Стороны S в м (горизонтальные расстояния)	Δα	Δy	X	Y	Название пунктов
P ₄ P ₃ C ₁ P ₃ cTB 1	87 [®] 32′ 24″ 30 49 30 87 32 24 309 46 38	5,431 7,981 6,754	+4,664 +0,343 +4,321	+2,783 +7,974 -5,191	+4575,242 +4579,906 +4575,242 +4575,585 +4579,906	+2180,753 +2183,536 +2180,753 +2188,727 +2183,536	Р ₄ Р ₃ С ₁ Р ₃ ств 1 С ₁

Привязка к одинарному стенному знаку при наличии видимости на соседние знаки

Исходные данные:

$$egin{array}{lll} X_{C_1} = 868,929; & Y_{C_1} = 168,472 \\ X_{C_2} = 995,044; & Y_{C_2} = 282,611 \\ \alpha_{C_1-C_2} = 42^9 \ 08' \ 33''; & d_C = 170,096 \\ \end{array}$$

Измерено:

$$\angle 1 = 88^9 \ 28' \ 05'';$$
 $l_1 = 5.624$

Определяемый пункт P_1

Формулы:
$$\sin \delta = \frac{l_1 \sin 1}{d_C}$$
; $\gamma = 180^\circ - (1+\delta)$; $\sin \delta = \frac{5.624 \cdot 0.999642}{170.096} = 0.033052$; $\delta = 1^\circ 53' 39''$.

Название пунктов	Дирекционные направления	Стороны S в ж (горезонтальные расстояния)	Δx	Δυ	X	Y	Название пунктов
$egin{array}{c} C_{f 1} \ m{p_1} \end{array}$	131° 46′ 49″	5,624	-3,747	+4,194	+868,929 +865,182	+168,472 +172,666	$egin{array}{c} C_1 \ P_1 \end{array}$

Привязка к стенным знакам (метод редуцирования)

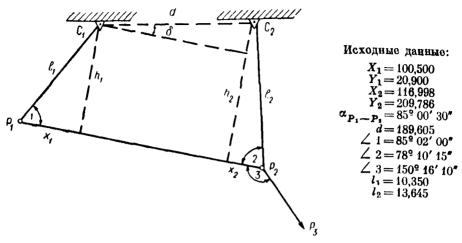


Рис. 41

Определяемый пункт P_2 и дирекционное направление $P_1 - P_2$

Формулы:
$$h_1 = l_1 \sin 1$$
; $h_2 = l_2 \sin 2$; $\sin \delta = \frac{h_2 - h_1}{d}$.

Решение

$$h_1 = 10,350 \sin 85^{\circ} 02' 00'' = 10,350 \cdot 0,996245 = 10,311;$$

$$h_2 = 13,645 \sin 78^{\circ} 10' 15'' = 13,645 \cdot 0,978763 = 13,355;$$

$$\sin \delta = \frac{13,355 - 10,311}{189,605} = \frac{3,044}{189,605} = 0,016054; \quad \delta = 0^{\circ} 55' 11''.$$

Дирекционное направление линии $P_1 - P_2$ будет $\alpha_{P_1 - P_2} = 85^{\circ} 55' 41''$.

Название пунктов	Дирекцион- ные направления	Стороны S в м (горизон- тальные расстояния)	Δχ	Δυ	X	Y	Название пунктов
$egin{array}{ccc} C_1 & & & & & & & & & & & & & & & & & & &$	85º 00′ 30″ 164 05 56	13,645	213,123	+3,738	+116,998 +103,875	+209,786 +213,524	C ₁ C ₂ P ₂

Привязка к стенным знакам методом створа

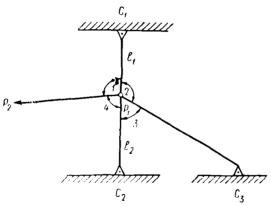


Рис. 42

3

Исходные данные:

$$egin{align*} X_{c_1} = 474,459 & Y_{c_1} = 425,436 \\ X_{c_2} = 500,972 & Y_{c_2} = 426,756 \\ X_{c_3} = 504,978 & Y_{c_3} = 530,837 \\ lpha_{c_1-c_2} = 2^{\circ} \, 51' \, 01'' & d = 26,546 \\ \end{gathered}$$

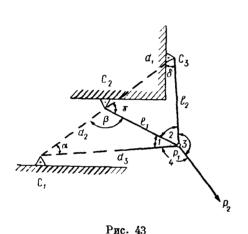
-t₂ - 51 55

Измерено:

$$\angle 1 = 90^{\circ} 30' 46''$$
 $l_1 = 13,003$
 $\angle 2 = 97 48 13$
 $l_2 = 13,540$
 $\angle 3 = 82 11 47$
 $\angle 4 = 89 29 14$

Определяемый пункт P_1

Кептроль:


$$\angle 1 + 4 = 90^{\circ} 30' 46'' + 89^{\circ} 29' 14'' = 180^{\circ} 00' 00''$$
 $\angle 3 + 2 = 82^{\circ} 11' 47'' + 97^{\circ} 48' 13'' = 180^{\circ} 00' 00''$

$$d_{\text{HSM}} = 26.543$$

$$d_{\text{BM}} = 26.546$$

Название пунктов	Дирекционные направления	Стороны S в м (горизонтальные расстояния)	Δ#	Δυ	x	Y	Название пунктов
C_1 P_1 C_2 P_1	2° 51′ 01″ 182 51 01	·13,003 13,540	+12,987 $-13,523$	+0 647 -0,673	+474,459 $+487,446$ $+500,972$ $+487,449$	+425,436 $+426,083$ $+426,756$ $+426,083$	$egin{array}{c} C_1 \\ P_1 \\ C_2 \\ P_1 \end{array}$

Привязка к системе двойных стенных знаков полярным методом

Исходные данные:

$$X_{C_1} = 454,390$$
 $Y_{C_1} = 314,804$ $X_{C_2} = 474,459$ $Y_{C_3} = 425,436$ $X_{C_3} = 492,972$ $Y_{C_3} = 432,736$ $\alpha_{C_1-C_2} = 79^9,43',05''$ $\alpha_{C_2-C_3} = 21^9,31',13''$ $\alpha_{C_3} = 21^9,900$

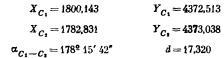
Измерено:

$$\angle 1 = 41^{\circ} 38' 24''$$
 $\angle 2 = 43^{\circ} 06' 48''$
 $\angle 4 = 92^{\circ} 30' 45''$
 $l_1 = 15,361$
 $l_2 = 28,119$

Определяемый пункт Р1

Формулы:
$$\sin \gamma = \frac{l_2 \cdot \sin 2}{d_1}$$
; $\sin \delta = \frac{l_1 \cdot \sin 2}{d_1}$; $\sin \alpha = \frac{l_1 \cdot \sin 1}{d_2}$; $d_3 = \frac{d_2 \cdot \sin \beta}{\sin 1}$.

Решение треугольников


Название сторо н	Стороны в м	sin	А глов Название	Углы	Название сторон	Стороны в м	sin	Названи е Уг лов	Углы
$\begin{matrix} l_2\\ d_1\\ l_1\\ d_1\end{matrix}$	28,119 19,900 15,361 19,900	0,683443 0,965715 0,683443 0,527556	2 Y 2 8	43° 06′ 48″ 105 02 46 43 06 48 31 50 26	$egin{array}{c} l_1 \\ d_2 \\ d_2 \\ d_3 \\ \end{array}$	15,3 61 112,437 112,437 123,453	0,664448 0,090776 0,729546 0,664447	1 α β	41º 38' 24" 5 12 30 133 09 06 41 38 24

Название пунктов	Дирекционные направления	Стороны S в м (горизонтальные расстояния)	Δχ	Δγ	X	Y	На з вание п у нктов
C_1 p_1 C_2 p_1 C_3 p_1	84° 55* 35′ 126 33 59 169 40 47	123,453 15,361 28,119	+10,918 $-9,151$ $-27,664$	+122,969 +12,337 +5,038	+454,390 +465,308 +474,459 +465,308 +492,972 +465,308	+314,804 +437,773 +425,436 +437,773 +432,736 +437,774	$C_1 \\ P_1 \\ C_2 \\ P_1 \\ C_3 \\ P_1$

Рис. 44

Привязка к системе двойных стенных знаков

Исходиме данные:

Иамерено:

Определяемый пункт Р.

Формулы:
$$d^2 = l_1^2 + l_2^2 - 2l_1l_2\cos 2$$
; $\delta_{l_1} = kal_1$; $\delta_{l_2} = kbl_2$; $a = \frac{1}{d}\left(l_1 - l_2\cos 2\right)$; $b = \frac{1}{d}\left(l_2 - l_1\cos 2\right)$; $k = \frac{\delta d}{a^2l_1 + b^2l_2}$; $\delta_d = d_{\text{Katan}} - d_{\text{BMM}}$; $\delta_2 = 0$.

Обозначения	Величины	Обозначения	Величи- ны	Обозначения	Величины	Обозначения	Величины
$egin{array}{c} l_1^2 \\ l_2^2 \\ -2l_1l_2\cos2 \\ d^2 \\ d \\ \deltalpha \end{array}$	250,8106 293,5055 244,2060 300,1101 17,3237 —37	l_1 $-l_2\cos 2$ $l_1-l_2\cos 2$ a	15,8370 7,7100 8,1270 0,4691	$l_{2} \\ -l_{1} \cos 2 \\ l_{2} -l_{1} \cos 2 \\ b$	17,1320 7,1272 10,0048 0,5775	$a^2l_1 \\ b^2l_2 \\ a^2l_1 + b^2l_2 \\ k$	3,4850 5,7136 9,1986 0,4022
kal ₁ kbl ₂	-2,988 -3,980	$l_1 + \delta_{I_1}$ $l_2 + \delta_{I_2}$ d	15,8340 17,1280 17,3200	sin α sin β sin 2	0,816385 0,883103 0,893002	∠ α ∠ β ∠ 2 Σ	54° 43′ 30″ 62 01 12 63 15 15 179 59 57

Название пунктов	Дирекционные направления	Стороны S в м (горизонтальные расстояния)	Δ≭	Δy	X	Y	Названи е пунктов
$egin{array}{c} C_1 \ P_2 \ C_2 \ P_2 \end{array}$	240° 16′ 54″ 303 32 12	15,834 17,128	-7,850 +9,463	-13,751 -14,277	+1800,143 +1792,293 +1782,831 +1792,294	+4372,513 +4358,762 +4373,038 +4358,761	$egin{pmatrix} C_1 & & & & & \\ P_2 & & & & & \\ C_2 & & & & \\ P_2 & & & & & \end{pmatrix}$

Вычисление привязочных точек методом угловых засечек (по способу условного базиса)

$\begin{array}{c|c} C_1 & C_2 \\ \hline \\ C_1 & \overline{\rho} & \overline{a} & \overline{r} \\ \hline \\ C_2 & \overline{\rho} & \overline{a} \\ \hline \\ C_3 & \overline{\rho} & \overline{\rho} \\ \hline \\ C_4 & \overline{\rho} \\ \hline \\ C_5 & \overline{\rho} \\ \hline \\ C_7 & \overline{\rho} \\ \hline \\ C_8 & \overline{\rho} \\ \\ C_8 & \overline{\rho} \\ \hline \\ C_8 & \overline{\rho} \\ \\ C_8 & \overline{\rho} \\$

Рис. 45

Исходные данные:

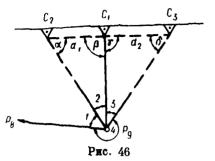
$$X_{C_1} = 639,340$$
 $Y_{C_1} = 175,414$ $X_{C_2} = 620,867$ $Y_{C_2} = 167,846$ $\alpha_{C_1-C_2} = 202^{\circ} 16' 40''$ $\alpha_{C_2} = 167,846$

Измерено:

$$\angle$$
 1 = 50° 41′ 24″ \angle 3 = 40° 21′ 12″ \angle 2 = 43 09 48 \angle 4 = 45 30 48 $P_{1 \text{ crb}_1} = 20,000$

Определяемые пункты P_1 и $P_{1 \text{ ств.}}$

Решение треугольников


Название сторон	Стороны в <i>ж</i>	sin	Название углов	Углы	Название сторон	Стороны в м	sin	Название углов	Углы
b l ₄ l ₁	20,000 27,838 18,066	0,716829 0,997739 0,647499	$\begin{array}{c c} \alpha \\ 1+2 \\ 3 \end{array}$	45° 47′ 36″ 93 51 12 40 21 12	$egin{array}{c} l_1 \ l_3 \ d \end{array}$	18,066 25,679 19,9498	0,700653 0,995934 0,773729	$\alpha + \beta$	44° 28′ 50″ 84 49 46 50 41 24
$egin{array}{c} b \ l_3 \ l_2 \end{array}$	20,000 25,679 17,612	0,776816 0,997366 0,684080	$\begin{bmatrix} \delta \\ 3+4 \\ 2 \end{bmatrix}$	180 00 00 50 58 12 85 52 00 43 09 48 180 00 00	l ₂ !4 d	17,612 27,838 19,9500	0,629827 0,995481 0,713413	$\gamma + \delta$	180 00 00 39 02 15 95 26 57 45 30 48 180 00 00

Вычисление действительных длин сторон треугольников

	Название сторон	Длина стороны в м	K	Длина стороны (действительная) в м
$K = \frac{d_{\text{NENOB}}}{d_{\text{YENOB}}} = 1,000652$	l ₁ b l ₂ l ₄ l ₃	18,066 20,000 17,612 27,838 25 679	1,000652 1,000652 1,000652 1,000652 1,000652	18,078 20,013 17,623 27,856 25,696

Название Дирекционные пунктов направления	Стороны S в ж (горизонтальные расстояния)	Δx	Δy	X	Y	Название пунктов
$ \begin{array}{c c} C_1 & & & 287^{\circ} \ 06' \ 34'' \\ P_1 & & & & \\ C_2 & & & & \\ P_1 & & & & \\ C_1 & & & & \\ C_{TB_1} & & & & \\ C_2 & & & & \\ C_{TB_1} & & & & \\ \end{array} $	18,078 25,696 27,856 17,623	+5.318 $+23.791$ -13.370 $+5.102$	-17,278 $-9,710$ $-24,437$ $-16,869$	$\begin{array}{c} +639,340 \\ +644,658 \\ +620,867 \\ +644,658 \\ +639,340 \\ +625,970 \\ +620,867 \\ +625,969 \end{array}$	$\begin{array}{c} +175.414\\ +158.136\\ +167.846\\ +158.136\\ +175.414\\ +150.977\\ +167.846\\ +150.977\end{array}$	$C_1\\P_1\\C_2\\P_1\\C_1\\C_1\\C_{TB_1}\\C_2\\C_{TB_1}$
01B1				7-020,808	±100'911	LIBI

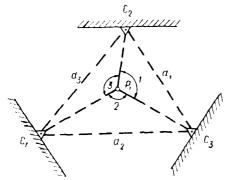
Привизка к системе тройных стенных знаков

Исходные данные:

Измерено:

$$\angle 1 = 67^{\circ} 31' 45''$$
 $\angle 2 = 23^{\circ} 34' 10''$
 $\angle 4 = 245^{\circ} 28' 25''$
 $\angle 1 = 13,418$

$$\sin \alpha = \frac{l_1 \sin 2}{d_1}; \quad \beta = 180^{\circ} - (\alpha + 2); \quad C_2 P_{\theta} = \frac{d_1 \sin \beta}{\sin 2}; \quad \sin \delta = \frac{l_1 \sin 3}{d_2};$$


$$\gamma = 180^{\circ} - (\delta + 3); \quad C_3 P_{\theta} = \frac{d_2 \sin \gamma}{\sin 3}$$

Определяемый пункт P_{\bullet}

Решение треугольников

На звание	Стороны		Название	Углы		
сторон	в ж		углов			
$C_2^{d_1}$	5,838	0,399860	2	23° 34′ 10′		
	13,418	0,919034	α	66 47 07		
	14,600	0,999981	β	89 38 43		
$d_2 \ l_1 \ C_3 P_9$	5,830 13,418 14,663	0,397593 0,915078 0,999981	3 δ Υ	180 00 00 23 25 40 66 13 01 90 21 19		
				180 00 00		

Название пунктов	Дирекцион- ныс направления	Стороны 8 в м (горизон- тальные расстояния)	Δχ	Δη	X	Y	Назва ние п у нктов
$egin{array}{c} C_1 \ P_9 \ C_2 \ P_9 \ C_3 \ P_9 \ \end{array}$	293° 39′ 43″ 270 05 30 317 05 23	13,418 14,600 14,663	+5,385 +0,023 +10,740	12,290 14,600 9,983	+437,366 +442,751 +442,728 +442,751 +432,012 +442,752	+336,532 +324,242 +338,342 +324,242 +334,225 +324,242	C ₁ P ₉ C ₂ P ₉ C ₃ P ₉

Рис. 47

Исходные данные:

Измерено:

$$\angle 1 = 111^{\circ} 17' 31''$$

 $\angle 2 = 143 28 11$
 $\angle 3 = 105 14 18$

Определяемый пункт P_1

Формулы:
$$x_{P_1} = \frac{P_{C_1}x_{C_1} + P_{C_2}x_{C_3} + P_{C_3}x_{C_3}}{P_{C_1} + P_{C_2} + P_{C_3}};$$
 $y_{P_1} = \frac{P_{C_1}y_{C_1} + P_{C_2}y_{C_2} + P_{C_3}y_{C_3}}{P_{C_1} + P_{C_2} + P_{C_3}};$ $P_{C_2} = \frac{1}{\cot g C_1 - \cot g 1};$ $P_{C_3} = \frac{1}{\cot g C_3 - \cot g 3}.$

Название пунктов	Углы	ctg	Исходный ctg	-ctg измеренный +ctg исходный	P	Х	Y	Название п у нктов
C_1 C_2 C_3	111° 17′ 31″ 143 28 11 105 14 18	-0,389722 -1,349930 -0,272413	0,418110 0,291720 1,236956	0,807832 1,641650 1,509369	1,237881 0,609144 0,662528	4323,685 4347,815 4307,032	1115,981 1137,891 1162,881	$egin{array}{c} C_1 \ C_2 \ C_3 \end{array}$
					2,509553	4325,146	1132,681	P_1

Каталог координат и высот стенных знаков

М	Адрес	Тип	Класс	Класс Высота	Класс	Координаты		Дирекцион-	Стороны	
знаков Стенных		ec Shaka I	ливелирова- ния	Высота в Балтий- ской системе	или разряд	X	У	Дирекцион- ные углы Т	Стороны в ж	На пункт
	 				 					<u> </u>
									_	
						<u> </u>				
	<u></u>		 			 -				\
		<u> </u>	<u> </u>	<u> </u>					- 	
			 -			<u> </u>	<u> </u>			

СПИСОК ЛИТЕРАТУРЫ

Верещагин К.А. Опыт применения стенных знаков. «Геодезия и картография», 1962, № 12.

Гинабург Л. В. Городская полигонометрия со стенными центрами. «Геодезия и картография», 1959, № 7.

Даниленко Т. С. Связь с геодезическими пунктами, закрепленными на сооружениях. М., «Недра», 1969.

Даниленко Т. С. Привязка к геодезическим стенным знакам. «Геодезия и картография», 1960, № 1.

Дегтярев П. Ф. Закрепления центров геодезических пунктов двумя стенными знаками. «Геодезия и картография», 1962, № 2.

Дегтярев П. Ф. О закреплении пунктов геодезической опоры. «Промышленное строительство», 1965, № 5.

Зюзин А. С. Боковая рефракция при памерении углов на пунктах городской полигонометрии. «Геодезия и картография», 1956, № 6.

Коськов Б. И. Городская полигонометрия. М., Геодезиздат, 1962.

Коськов Б. И. Справочное руководство по съемке городов, М., «Недра», 1968.

Лебедев Н. Н. Расчет необходимой точности геодезического обоснования для крупномасштабных съемок городских и промышленных территорий. «Геодезия и картография», 1958, № 10.

Лосев К. А., Матвеев И. В. Закрепление точек городской полигонометрии парами стенных центров. «Геодезия и картография», 1956, № 4.

Лосев К. А. О закреплении пункта полигонометрии двумя стенными знаками. «Геодезия и картография», 1963, № 5.

Марченко С. Н. Настенная городская полигонометрия. Киев, АН УССР, 1950.

Марченко С. Н. Рекомендации по определению координат и эксплуатации стенных геодезических пунктов. Киев, АН УССР, 1961.

Марченко С. Н. Хронометраж привязки теодолитных ходов к стенным знакам полигонометрии. «Геодезия и картография», 1961, № 2.

Марченко С. Н. Ориентирован планово-высотный геодезический пункт. Труды Киевского Гидромелиоративного института, вып. 5. Киев, 1956.

Мулюн Ю.В. К вопросу о стенных полигонометрических знаках. «Геодезия и картография», 1962, № 8.

Соколов П. К. Обеспечение сохранности геодезических знаков. «Геодезия и картография», 1959, № 6.

Петров М. К. Стенные знаки полигонометрии. «Опыт внедрения нового в изыскательском производстве», Лениздат, 1961.

X мелевский Ю.С. Опыт использования стенных полигонометрических знаков. «Геодезия и картография», 1963, № 6.

X мелевский Ю. С. Вычисление углов плоского треугольника по длине его сторон. «Геодезия и картография», 1961, № 7.

Хренов Л.С. и Коськов Б.И. Создание постоянного съемного обоснования на территории городов. «Геодезия и картография», 1965, № 3.

содержание

	Стр.
I. Общие положения	3
II. Рекогносцировка	4
III. Закладка стенных знаков	5
IV. Системы стенных геодезических знаков	8
1. Орнентирные системы стенных знаков	8
2. Восстановительные системы стенных знаков	20
V. Точность работ при координировании стенных знаков и привязка	
к ним	21
Приложения;	
1. Консольные (штанговые) стенные знаки	24
2. Список мест установки стенных геодезических знаков	26
3. Кроки привязки стенных знаков	26
4. Акт о сдаче геодезических знаков на наблюдение за сохранностью	27
5. Примеры вычислений (1—14),	29
6. Каталог координат и высот стенных знаков	52
Список литературы	53

Гл. упр. геодезии и картографии при Совете Министров СССР

Руководство по применению стенных знаков в полигонометрических и теодолитных ходах

Редактор издательства Ф. И. Хромченко Технические редакторы В. И. Калужина и В. В. Романова Корректор П. А. Денисова

Сдано в набор 11/II 1972 г.
Подписано в печать 28/VI 1972 г. Т-10873.
Формат 60×90¹/1.
Печ. л. 3,5.
Гиран 8600 яв.
Заказ 1518/4386-15.
Цена 15 коп.

Издательство «Недра». 103633, Москва, К-12, Третьяковский вроезд, д. 1/19. Ленинградская типография № 6 Главполиграфирома Комитета по печати при Совете Министров СССР, Московский проспект, 91.