МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ»

МЕТОДИКА ОБЕСПЕЧЕНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ СКЛАДИРОВАНИЯ САМОВОЗГОРАЮЩИХСЯ МАТЕРИАЛОВ

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ»

МЕТОДИКА ОБЕСПЕЧЕНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ СКЛАДИРОВАНИЯ САМОВОЗГОРАЮЩИХСЯ МАТЕРИАЛОВ

Авторский коллектив:

д-ра техн. наук: проф. И.А. Болодьян, проф. Ю.Н. Шебеко, проф. В.И. Горшков, доц. И.А. Корольченко; канд. техн. наук А.В. Казаков, Д.Н. Соколов.

Методика обеспечения пожарной безопасности складирования самовозгорающихся материалов. — М.: ВНИИПО, 2008. — 46 с.

Настоящая методика позволяет определять условия самовозгорания материалов при их складировании с учетом размеров и форм, используемых на практике, а также климатических особенностей регионов хранения на основе экспериментально-расчетных исследований. С помощью данной методики рассчитывают критическую температуру атмосферного воздуха, превышение которой может вызвать тепловое самовозгорание, а также время хранения при температуре воздуха выше критической, по истечении которого может произойти самовозгорание материала. Методика позволяет определить безопасные размеры компактной укладки складируемого материала; критические размеры штабеля или объем засыпки, а также допустимое время такого складирования материалов, прогретых выше температуры атмосферного воздуха.

Издание предназначено для подразделений пожарной охраны и специализированных организаций.

Утверждена ФГУ ВНИИПО МЧС России 18 января 2008 г.

Внедрена в практическую деятельность УГПН МЧС России (акт от января 2008 г.).

ОГЛАВЛЕНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ	:
2. ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ПРОЦЕССА ТЕРМООКИСЛЕНИЯ МАТЕРИАЛОВ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ	<i>'</i>
2.1. Аппаратура 2.2. Подготовка и проведение испытаний	!
материалов	. 1
3. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ МАТЕРИАЛОВ, ТЕМПЕРАТУРА КОТОРЫХ РАВНА ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ	1
ИЛИ НИЖЕ ЕЕ	
3.1. Расчет параметра Франк-Каменецкого	
3.2. Расчет критической температуры	
3.3. Расчет времени индукции	
3.4. Расчет критического и безопасного размеров	15
4. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ МАТЕРИАЛОВ, ПРОГРЕТЫХ ВЫШЕ ТЕМПЕРАТУРЫ	٠.
ОКРУЖАЮЩЕЙ СРЕДЫ	
4.1. Расчет параметра Франк-Каменецкого	
4.2. Расчет критического и безопасного размеров	24
материала	23
4.4. Расчет времени индукции	
Литература	25
Приложение 1. Пример расчета кинетических	
параметров	26
Приложение 2. Параметры кинетики процесса	
термоокисления некоторых материалов	30
Приложение 3. Примеры расчета критических парамет-	
ров самовозгорания для материалов, имеющих	
при складировании температуру окружающей среды	
3.1п. Пример расчета δ ₀ штабеля	
3.2п. Пример расчета критической температуры	32

3.3п. Пример расчета времени индукции	. 34
3.4п. Пример расчета критического и безопасного	
размеров	. 38
Приложение 4. Примеры расчета критических	
параметров самовозгорания предварительно	
прогретых материалов	. 41
4.1п. Пример расчета б _{кр}	. 41
4.2п. Пример расчета критического и безопасного	
размеров	. 42
4.3 п. Пример расчета критической температуры про-	
грева материала	. 43
4.4п. Пример расчета времени индукции	

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1. Методика предназначена для определения на основе экспериментально-аналитических исследований условий самовозгорания материалов при складировании. Результаты исследований позволяют разрабатывать предупредительные мероприятия.
- 2. Возможность возникновения теплового самовозгорания материалов определяется на основе расчетов критической температуры и периода индукции процесса для температуры окружающей среды, превышающей верхнюю границу климатического перепада среднесуточных значений для регионов Российской Федерации (40 °C).
- 3. Критические параметры самовозгорания материалов, имеющих при складировании температуру окружающей среды, определяются в следующем порядке:
- а) на базе результатов экспериментального определения температур самовозгорания образцов материала в лабораторных условиях рассчитываются параметры кинетики процесса окисления. В расчетах могут быть использованы известные значения кинетических характеристик для материала аналогичной марки;
- б) для заданной формы объема, занимаемого хранящейся продукцией, вычисляют параметр Франк-Каменецкого (δ_0);
- в) рассчитывается критическая температура $T_{\kappa p}$ окружающей среды;
- г) если критическая температура для рассматриваемых условий складирования $T_{\rm kp} \le 40$ °C, определяется период индукции процесса для температуры среды 40 °C (313 K);
- д) при выявлении возможности возникновения самовозгорания материала рассчитывают безопасный размер

компактной укладки (засыпки) продукции для температуры среды 40 °C.

- 4. Критические параметры самовозгорания предварительно прогретых материалов определяются в следующем порядке.
- 4.1. При известной температуре предварительного нагрева материала:
- а) аналогично п. За находят необходимые для расчета кинетические параметры реакции окисления;
- б) для заданной формы компактной укладки или засыпки материала вычисляют параметр Франк-Каменецкого $(\delta_{\kappa p});$
- в) рассчитывают критический размер складирования $r_{\rm kp}$ при температурах предварительного прогрева материала и окружающей среды;
- г) при величине $r_{\rm kp} \le 1/2$ наименьшего размера скопления продукта определяется период индукции процесса;
- д) при выявлении возможности возникновения самовозгорания материала рассчитывают безопасный размер компактной укладки (засыпки) продукции.
- 4.2. При постоянных размерах объема хранимой продукции (бункер, ложе терминала и т. п.):
- а) аналогично п. За находят необходимые для расчета параметры кинетики процесса;
- б) определяют критическую температуру предварительного прогрева материала согласно п. 4.3;
- в) при $T_{\rm kp} \le$ температуры рабочей среды технологического процесса или прогрева поверхностей технологического оборудования рассчитывают:

- при возможности регулирования максимальной температуры прогрева материала безопасную температуру нагрева $T_{6c_3} = 0.8 T_{xp}$;
- при заданной температуре нагрева безопасный размер засыпки продукции.
- 5. Методику следует использовать для оценки пожарной опасности объектов складирования и разработки профилактических мероприятий по предотвращению самовозгорания материалов организациям, имеющим лицензию на проведение работ по обеспечению пожарной безопасности.

2. ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ПРОЦЕССА ТЕРМООКИСЛЕНИЯ МАТЕРИАЛОВ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

2.1. Аппаратура

Аппаратура для определения кинетических параметров процесса термоокисления материалов включает в себя следующие приспособления:

- 2.1.1. Термостат вместимостью рабочей камеры не менее $40~{\rm дm}^3~{\rm c}$ терморегулятором, позволяющим поддерживать постоянную температуру $60 \div 500~{\rm ^{\circ}C}$ с погрешностью не более $\pm 1~{\rm ^{\circ}C}$.
- 2.1.2. Корзинки кубической или цилиндрической формы высотой 15, 30, 35, 50, 70, 100, 140 и 200 мм. Диаметр цилиндрической корзинки должен быть равен ее высоте. Материалом для корзинок служит сетка из латуни или нержавеющей стали для сыпучих материалов (с размером ячеек не более 1 мм) или листовая нержавеющая сталь толщиной не более 1 мм для плавящихся веществ.

- 2.1.3. Термоэлектрические преобразователи (термопары ТХА и ТХК) с максимальным диаметром рабочего спая 0,8 мм.
- 2.1.4. Измеритель термоэлектродвижущей силы, позволяющий осуществлять контроль изменения температуры образца материала с течением времени с записью на бумажном или электронном носителе.
- 2.1.5. Весы лабораторные с наибольшим пределом взвешивания 1000 г и точностью взвешивания 0,01 г.

2.2. Подготовка и проведение испытаний

- 2.2.1. К корзинкам крепят по три термоэлектрических преобразователя таким образом, чтобы один конец одной термопары находился внутри корзинки в ее центре, а второй на расстоянии не более 5 мм от внешней ее стороны (на высоте центра корзинки). Эти термопары соединяют по дифференциальной схеме, чтобы они измеряли разность температур: между температурой образца материала и температурой рабочей камеры. Для фиксирования температуры в термостате (температуры испытаний) рабочий конец третьей термопары располагают на расстоянии (30 ± 1) мм от стенки контейнера с образцом на высоте центра образца.
- 2.2.2. Корзинки заполняют исследуемым веществом и взвешивают. При испытаниях листового материала его набирают в стопку, соответствующую внутренним размерам корзинки. В образцах монолитных материалов предварительно высверливают до центра отверстие для термоэлектрического преобразователя диаметром не более 7 мм.
- 2.2.3. Свободные концы термопреобразователей подсоединяют к измерителю термоэлектродвижующей силы

для регистрации изменения разности температур в центре образца и температуры в рабочей камере термостата.

- 2.2.4. Корзинку помещают в центр термостата, нагретого до заданной температуры (например 200 °C), и наблюдают за изменением температуры в центре образца.
- 2.2.5. Самовозгорание образца фиксируется дифференциальной термопарой при увеличении разности температур до величины более 100 °C или определяется визуально.
- 2.2.6. Если при первом испытании самовозгорание не происходит в течение времени, указанного в табл. 1, то новый образец материала того же размера испытывают при температуре, на 20 °C больше заданной. Если самовозгорание произошло, то испытание проводят при меньшей на 10 °C температуре.
- 2.2.7. Испытания продолжают с образцами данного размера при различных температурах рабочего пространства термостата до достижения минимальной температуры, при которой образец самовозгорается, а при температуре, ниже минимальной на 1 °C, самовозгорание не происходит. При этих температурах выполняют по два эксперимента. Минимальную температуру, при которой исследуемый материал самовозгорается, принимают за температуру самовозгорания образца данного размера.

Таблица 1

Размер образца, мм	Продолжительность испытаний, ч
35	6
50	12
70	24
100	48
140	96
200	192

Таблица 2

Размер образца, мм	Температура самовозгорания T_{π}		
	°C	К	

2 2.2.8. Аналогичные испытания проводят с образцами исследуемого вещества в корзинках других размеров. Результаты испытаний оформляются в виде табл. 2.

2.3. Расчет параметров кинетики термоокисления материалов

Исходными данными для определения параметров кинетики термоокисления являются:

- данные табл. 2 для критической температуры самовозгорания $T_{\rm kp} \equiv T_0$ (K) образцов размером D (м);
 - коэффициент теплопроводности материала λ , Bt/(м \cdot K);
 - теплоемкость исследуемого материала c, Дж/(кг · K);
 - теплота реакции Q, Дж/кг.
- 2.3.1. Для каждого размера образца рассчитать число Рэлея по следующему выражению:

$$Ra = \frac{g}{va}D^3 \frac{RT_0}{E}, \qquad (1)$$

где g – ускорение силы тяжести, м/с²; ν – кинематическая вязкость воздуха при температуре T_0 , м²/с; a – температуропроводность воздуха при температуре T_0 , м²/с; D – высота образца, м; R – универсальная газовая постоянная, Дж/(моль · K); T_0 – температура рабочего пространства термостата, K; E – энергия активации реакции окисления. Допускается принимать равной 100 кДж/моль.

Для облегчения расчетов зависимость комплекса g/va от температуры в диапазоне $T_0 = 350 \div 800$ К может быть рассчитана по уравнению

$$\frac{g}{va} = 1, 2 \cdot 10^8 e^{\frac{1770}{T_0}}.$$
 (2)

2.3.2. Для всех размеров образцов вычислить коэффициенты теплоотдачи α по уравнениям:

при $5 \cdot 10^2 < \text{Ra} \le 2 \cdot 10^7$

$$\alpha = 0.54 \text{Ra}^{0.25} \frac{\lambda_{\text{B}}}{D} + 4\sigma T_0^3; \tag{3}$$

при Ra > 2·10⁷

$$\alpha = 0.135 \text{Ra}^{0.333} \frac{\lambda_e}{D} + 4\sigma T_0^3,$$
 (4)

где $\sigma = 5,67 \cdot 10^{-8}$ – постоянная Стефана-Больцмана, Вт/(м² · K⁴).

Коэффициент теплопроводности воздуха при температуре T_0 может быть определен по формуле

$$\lambda_{\rm a} = 6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} T_0. \tag{5}$$

2.3.3. По величине α , коэффициенту теплопроводности материала λ и половине высоты r=D/2 вычислить критерий Био для каждого образца

$$Bi = \frac{\alpha r}{\lambda}.$$
 (6)

2.3.4. Функцию $\phi_1(\text{Bi})$, учитывающую интенсивность теплообмена образца с воздухом, определить по уравнению

$$\varphi(Bi) = \frac{Bi}{2} \left(\sqrt{Bi^2 + 4} - Bi \right) \exp \frac{\sqrt{Bi^2 + 4} - Bi - 2}{Bi}.$$
 (7)

 2.3.5. Рассчитать параметры β и γ, характеризующие индивидуальные свойства реакции окисления

$$\beta = \frac{RT_0}{E}; \tag{8}$$

$$\gamma = \frac{cRT_0^2}{QE} \,. \tag{9}$$

2.3.6. С учетом интенсивности теплообмена и свойств реакции для каждого размера образца материала рассчитать критическое значение параметра Франк-Каменецкого:

$$\delta_{sp} = \delta_0 \phi \left(\text{Bi} \right) \left(1 + \beta \right) \left(1 + 2.4 \gamma^{\frac{2}{3}} \right), \tag{10}$$

где δ_0 – критическая величина параметра δ при интенсивном теплообмене, равная 2,52 – для образцов кубической формы и 2,76 – для цилиндра высотой, равной диаметру.

Результаты вычислений по формулам (1)–(10) свести в табл. 3.

Таблица 3

Размер г, м	<i>T</i> ₀ , K	Ra	α, Βτ/(м² · Κ)	Bi	φ(Bi)	φ	γ	δ_{np}

2.3.7. Зависимость критического значения параметра Франк-Каменецкого $\delta_{\kappa\rho}$ от кинетических параметров реакции окисления

$$\delta_{\rm sp} = \frac{Q\rho k_0}{\lambda} \frac{E}{RT_0^2} r^2 e^{-E/RT_0} \tag{11}$$

записывают в виде

$$M = Ne^{-E/RT_0}, (12)$$

где
$$M = \frac{\delta_{xp}RT_0^2}{r^2\rho}$$
; (13)

$$N = \frac{EQk_0}{\lambda} \,; \tag{14}$$

 ρ — плотность упаковки материала, кг/м³; k_0 — константа скорости реакции, 1/с.

- 2.3.8. По уравнению (13) для каждого размера образца рассчитать величину M. С помощью этих значений и уравнения (12) методом наименьших квадратов или с помощью программ обработки экспериментальных данных для персональных компьютеров «Eureka», «Curve Expert 1.3», «Mathematica 3.0», «Mathematica 4.0» и др. определить численные значения N и энергию активации E.
- 2.3.9. Вычислить предэкспоненциальный множитель реакции окисления Qk_0/λ путем деления N на E. Данные расчетов по уравнениям (12)–(14) свести в табл. 4.

Таблица 4

Раз- мер r, м	T ₀ ,	М, Дж · м · К/(кг · моль)	N, Дж∙м ∙К/(кт∙моль)	Е, Дж/моль	Qk₀/λ, m·K/kt

2.3.10. Если величина энергии активации, вычисленная в п. 2.1.8, отличается от ранее принятой (100 кДж/моль) более чем на 5 %, расчеты по пп. 2.1.1–2.1.10 необходимо повторить с новым значением энергии активации. Процесс итераций выполнять до тех пор, пока энергии активации в начале и конце расчета не будут отличаться менее чем на 5 %.

3. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ МАТЕРИАЛОВ, ТЕМПЕРАТУРА КОТОРЫХ РАВНА ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕЙ СРЕДЫ ИЛИ НИЖЕ ЕЕ

3.1. Расчет параметра Франк-Каменецкого

Исходными данными для расчета параметра Франк-Каменецкого (δ_0) являются форма и размеры компактной укладки или засыпки при складировании.

3.1.1. Вычислить отношение квадрата характерного размера скопления материала r^2 (минимального размера по одной из осей координат) к квадрату эквивалентной сферы Франк-Каменецкого R_0^2 по одному из соотношений:

прямоугольный цилиндр (цилиндрические бункера, бочки и т. п.) радиусом r, высотой 2d, p=r/d

$$\frac{r^2}{R_0^2} = \frac{1}{3} \left[p^2 + \frac{2}{\sqrt{1+p^2}} \right] \equiv \Omega; \tag{15}$$

прямоугольный брус (контейнер, штабель упаковок материала) со сторонами 2a, 2b, 2c, p = b / a, q = c / a (a – половина наименьшей стороны бруса).

$$\frac{a^2}{R_0^2} = \frac{2}{3\pi} \left[\arctan\left(\frac{pq}{\sqrt{1+p^2+q^2}}\right) + \frac{1}{p^2} \arctan\left(\frac{q}{p\sqrt{1+p^2+q^2}}\right) + \Psi \right] \equiv \Omega, \tag{16}$$

где
$$\Psi = \frac{1}{q^2} \operatorname{arctg} \left(\frac{p}{q\sqrt{1+p^2+q^2}} \right) + \frac{\sqrt{1+p^2+q^2}}{pq}$$
.

3.1.2. Найти радиус эквивалентной сферы Семенова по формуле

$$R_S = 3\frac{V}{S},\tag{17}$$

где V – объем упаковки материала, м³; S – ее внешняя поверхность, м².

3.1.3. Определить отношение квадратов радиуса эквивалентных сфер Франк-Каменецкого и Семенова:

$$\sigma = \frac{R_0^2}{R_S^2} = \frac{a^2}{\Omega R_S^2} \,. \tag{18}$$

3.1.4. Вычислить фактор формы для заданной геометрии упаковки материала:

$$j = 3\sigma - 1. \tag{19}$$

3.1.5. Найти функцию F(j) по формуле

$$F(j) = \frac{2j+6}{j+7}. (20)$$

 Зал.б. Рассчитать величину параметра Франк-Каменецкого с помощью формулы

$$\delta_0 = 3F(j)\frac{r^2}{R_0^2} = 3F(j)\frac{a^2}{R_0^2}.$$
 (21)

3.1.7. Для насыпей материала в форме конуса величину параметра Франк-Каменецкого рассчитать по формуле

$$\delta_0 = 3,63Z^{-1,33} ,$$

где Z – отношение радиуса конуса к его высоте.

Для конуса характеристический размер r — половина высоты; фактор формы j=1.

3.2. Расчет критической температуры

Исходными данными для расчета критической температуры при хранении веществ и материалов являются:

- плотность материала ρ, кг/м³;
- коэффициент теплопроводности материала λ , Bт/(м · K);
- теплоемкость исследуемого материала c, Дж/(кг · K);
- теплота реакции Q, Дж/кг;
- энергия активации Е реакции окисления, Дж/моль;
- предэкспоненциальный множитель Qk_0/λ , м · К/кг.
- 3.2.1. Для заданной формы штабеля или насыпи, используемой при складировании материала, рассчитать в соответствии с п. 3.1.1 величину критерия Франк-Каменецкого δ_0 .
- 3.2.2. Подставить полученную величину в уравнение (11) вместо $\delta_{\rm кp}$ и, решив его относительно T_0 , найти нулевое приближение для температуры самовозгорания.
- 3.2.3. По формуле (1) п. 2.3.1 вычислить значение критерия Рэлея для заданного размера материала.
- 3.2.4. Рассчитать коэффициент теплоотдачи по уравнению (4) п. 2.3.2 и по формуле (6) найти величину критерия Био.
- 3.2.5. Определить численное значение функции $\phi(Bi)$ по уравнению (7).
- 3.2.6. По формулам (8) и (9) найти величину параметров β и γ.
- 3.2.7. Рассчитать критическое значение параметра Франк-Каменецкого по уравнению (10).

- 3.2.8. Подставить величину $\delta_{\rm sp}$ в уравнение (11) и найти новое значение температуры T_0 .
- 3.2.9. Используя это значение T_0 , повторить расчет параметров по пп. 3.2.2–3.2.8.
- 3.2.10. Указанную процедуру расчета продолжать до тех пор, пока предыдущее и последующее значения температуры будут отличаться друг от друга менее чем на 1 °C. За критическую температуру принимается результат последнего расчета.

3.3. Расчет времени индукции

Расчет времени индукции необходимо производить в случае, когда критическая температура для самовозгорания материала ниже 40 °C (согласно п. 3г разд. 1).

Исходными данными для расчета являются:

- температура окружающей среды T₀, К (согласно п. 3г разд. 1 равна 313 К);
- критическая температура самовозгорания для заданного размера компактной укладки или насыпи при складировании $T_{\mathbf{zp}}$, K;
 - фактор формы материала j;
 - характеристический размер r, м;
 - плотность упаковки материала р, кг/м³;
- коэффициент теплопроводности материала λ , $Br/(M \cdot K)$;
 - теплоемкость исследуемого материала c , Дж/(кг · K);
 - теплота реакции Q, Дж/кг;
 - энергия активации E реакции окисления, Дж/моль;
 - предэкспоненциальный множитель Qk₀ / λ, м · K/кг.

- 3.3.1. По температуре T_0 вычислить параметры β и γ с помощью формул (8) и (9).
- 3.3.2. По уравнению (4) вычислить коэффициент теплоотдачи α и найти величину параметра Био по формуле (6).
- 3.3.3. По формуле (11) рассчитать параметр δ , соответствующий температуре T_0 , и параметр $\delta_{\rm кp}$ для критической температуры $T_{\rm kp}$.
- 3.3.4. Вычислить относительное удаление от предела воспламенения

$$\Delta = \frac{\delta}{\delta_{\rm gg}} \tag{22}$$

и функции

$$f_1(\Delta, \gamma) = 1 + 0.62 \frac{1 - 4\Delta^{-2} \sqrt{\gamma}}{(\Delta - 0.95)^{0.9}};$$
 (23)

$$f_2(j, \text{Bi}, \Delta) = 1 - \frac{[1 + 1,5(1 - 0,1\Delta)j]\text{Bi}}{16(1 + \text{Bi})}$$
 (24)

 3.3.5. Рассчитать безразмерное время индукции с помощью уравнений (22)—(24) по выражению

$$\tau = f_1(\Delta, \gamma) f_2(j, \text{Bi}, \Delta) (1 + 2\beta). \tag{25}$$

3.3.6. Определить размерное время индукции (t_n, c) по формуле

$$t_{\rm H} = \frac{\tau c R T_0^2}{Q k_0 E} e^{E/R T_0} \,. \tag{26}$$

3.4. Расчет критического и безопасного размеров

Если при заданных температуре хранения и размере компактной укладки возможно самовозгорание материала, то в соответствии с п. 3д разд. 1 определяют критический и безопасный размеры компактной укладки или засыпки материалов. Исходными данными для расчета критического размера складирования являются:

- энергия активации E реакции окисления, Дж/моль;
- предэкспоненциальный множитель Qk_0/λ , м · К/кг;
- температура хранения T_0 , K;
- фактор формы скопления материала ј;
- плотность упаковки материала р, кг/м³;
- теплоемкость исследуемого материала c, Дж/кг · К;
- теплота реакции Q, Дж/кг.

Расчет сводится к следующему:

- 3.4.1. В соответствии с п. 3.1.1 определить величину параметра δ_0 .
- 3.4.2. Для заданной температуры хранения по формулам (8) и (9) вычислить параметры β и γ .
 - 3.4.3. Рассчитать параметр $\delta_{\mbox{\tiny {\bf kp}}}$ по формуле

$$\delta_{\kappa p} = \delta_0 (1 + \beta) \left(1 + 2.4 \gamma^{2/3} \right).$$
 (27)

 3.4.4. В первом приближении минимальный размер находят из выражения

$$r = \sqrt{\frac{\lambda R T_0^2 \delta_{\text{sp}} e^{E/RT_0}}{EOk_{00}}}.$$
 (28)

- 3.4.5. По уравнению (4) вычислить коэффициент теплоотдачи α .
- 3.4.6. Найти величину параметра Био по формуле (6) и рассчитать значение функции ϕ (Bi) по уравнению (7).
- 3.4.7. Определить величину параметра $\delta_{\kappa p}$ по уравнению (10).
- 3.4.8. По формуле (28) вычислить новое значение характеристического размера складирования материала.
- 3.4.9. Используя это значение r, повторить расчет параметров по пп. 3.4.1–3.4.8.
- 3.4.10. Процедуру расчета продолжать до тех пор, пока предыдущее и последующее значения размеров будут отличаться друг от друга менее чем на 5 %. За критический размер $r_{\kappa p}$ принимается результат последнего расчета.
- 3.4.11. В качестве безопасного значения размера принимаем $0.8r_{\rm KP}$. Так как определенный критический размер является половиной минимального размера скопления, за безопасный размер укладки материала (требуемый минимальный из размеров компактной укладки или засыпки продукции) принимается величина $1.6r_{\rm KP}$.

Если реализация этих мер невозможна (малая величина безопасного размера и т. п.), отсутствие самовозгорания материала можно обеспечить при складировании продукции в течение времени не более $0.8\tau_{40}$ (периода индукции для $T_0 = 40$ °C).

4. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ МАТЕРИАЛОВ, ПРОГРЕТЫХ ВЫШЕ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕЙ СРЕДЫ

4.1 Расчет параметра Франк-Каменецкого

Исходными данными для расчета параметра Франк-Каменецкого (δ_{xo}) являются:

- энергия активации Е реакции окисления, Дж/моль;
- температура предварительного прогрева материала $T_{\rm H}$, K;
 - температура окружающей среды T_0 , К;
 - форма компактной укладки или насыпи при хранении.
 Расчет сводится к следующему:
- 4.1.1. Вычислить безразмерную разность температур материала и окружающей среды (температурный напор очага) по формуле

$$\theta_0 = \frac{E}{RT_{\rm H}^2} (T_{\rm H} - T_0). \tag{29}$$

4.1.2. Рассчитать величину параметра Франк-Каменецкого в зависимости от формы материала:

а)
$$\delta_{\rm kp} = a({\rm ln}\theta_0)^b$$
, (30) где значения коэффициентов a и b для различных форм

компактной укладки представлены в табл. 5;

		1 4 5 7 8 7 4 5
Форма тела	a	Ь
Пластина	5,05	0,93
Цилиндр	9,87	0,71
Сфера	12,75	0,65
Куб	10,25	0,61

б) пля материалов, хранящихся в цітабеле (имеющем форму прямоугольного бруса):

$$\delta_{\mathbf{k}\mathbf{p}} = \mathbf{e}\ln(\mathbf{M}\theta_0). \tag{31}$$

Вычислить параметр р. равный отношению средней и меньшей сторон бруса:

при
$$p > 2$$
 $\delta_{kp} = 4.98 \ln(1.20);$ (32)

$$1 \le p \le \begin{cases} s = 50, 1 - 118p + 111p^2 - 45p^3 + 6,76p^4; \\ m = -26, 7 + 87,6p - 93,7p^2 + 42,2p^3 - 6,86p^4. \end{cases}$$
(33)

4.2. Расчет критического и безопасного размеров

Исходными данными для расчета являются:

- температура окружающей среды T₀, К;
- температура предварительного разогрева материала $T_{\rm H}$, K;
 - плотность упаковки материала р, кг/м3;
- коэффициент теплопроводности материала а, $B\tau/(M \cdot K)$:
 - теплоемкость исследуемого материала c, Дж/(кг · K);
 - энергия активации E реакции окисления, Дж/моль;
 - предэкспоненциальный множитель Qk_0/λ , м · К/кг.
- 4.2.1. Рассчитать согласно п. 4.1 критическое значение параметра Франк-Каменецкого δκρ.
- значение критического размера 4.2.2. Рассчитать складирования по формуле

$$r_{\rm kp} = \sqrt{\frac{\lambda R T_{\rm H}^2 \delta_{\rm kp} e^{\frac{E}{R} T_{\rm H}}}{E Q k_0 \rho}} \ . \tag{34}$$

 $4.2.3.~\mathrm{B}$ качестве безопасного значения размера принимаем величину $0.8r_{\mathrm{KP}}$ Так как определенный критический размер является половиной минимального размера скопления, за безопасный размер укладки материала принимается величина $1.6r_{\mathrm{KP}}$.

Если реализация этих мер невозможна (малая величина безопасного размера и т. п.), отсутствие самовозгорания материала можно обеспечить при складировании продукции в течение времени не более $0.8\tau_{40}$ (периода индукции для $T_0 = 40$ °C).

4.3. Расчет критической температуры прогрева материала

Исходными данными для расчета являются:

- температура окружающей среды T_0 , K;
- плотность упаковки материала р, кг/м³;
- коэффициент теплопроводности материала λ , Bт/(м · K);
- теплоемкость исследуемого материала c, Дж/(кг · K);
- энергия активации E реакции окисления, Дж/моль;
- предэкспоненциальный множитель Qk_0/λ , м · К/кг;
- форма и размеры штабеля или насыпи материала.
- 4.3.1. Принять температуру предварительного разогрева материала $T_{\rm H}\,$ на 180 К больше заданной температуры $T_{\rm 0}\,.$
- 4.3.2. Рассчитать согласно п. 4.1 критическое значение параметра Франк-Каменецкого $\delta_{\kappa p}$.
 - 4.3.3. Подставить величину $\delta_{\kappa p}$ в уравнение

$$\delta_{\rm kp} = \frac{Q\rho k_0}{\lambda} \frac{E}{RT_{\rm H}^2} r^2 e^{-E/RT_{\rm H}} \tag{35}$$

и найти новое значение температуры $T_{\rm кp}$.

- 4.3.4. Используя это значение $T_{\rm кp}$, повторить расчет параметров по пп. 4.3.2–4.3.3.
- 4.3.5. Указанную процедуру расчета продолжать до тех пор, пока предыдущее и последующее значения температуры будут отличаться друг от друга менее чем на 1 К. За критическую температуру принимается результат последнего расчета.

4.4. Расчет времени индукции

Исходными данными для расчета являются:

- температура окружающей среды T_0 , К;
- температура предварительного разогрева материала $T_{\rm H}$, K;
 - плотность упаковки материала ρ, кг/м³;
 - коэффициент теплопроводности материала λ, Вт/(м · K);
 - теплоемкость исследуемого материала c, Дж/(кг · K);
 - энергия активации E реакции окисления, Дж/моль;
 - предэкспоненциальный множитель Qk_0/λ , м · К/кг.
- 4.4.1. С учетом значений T_0 и T_H рассчитать по формуле (29) θ_0 и соответствующую величину параметра Франк-Каменецкого δ по одному из выражений: (30) или (31)–(33).
- 4.4.2. Подставляя полученные результаты в уравнение (36), с помощью программ для персональных компьютеров «Мathematica 3.0», «Мathematica 4.0» и др. определить численные значения критического температурного напора θ . в центре очага в момент начала непрерывного роста температуры.

$$\frac{3\sqrt{\pi e^{-\theta_{\bullet}}}}{4\sqrt{\theta_{0}-\theta_{\bullet}}} \left[\frac{3(1+j)}{2\delta} + \frac{1}{2(\theta_{0}-\theta_{\bullet})} + 1 \right] =$$

$$= \frac{9(1+j)^{2}}{\delta^{2}} (\theta_{0}-\theta_{\bullet}), \tag{36}$$

где j — параметр, учитывающий форму тела. Для пластины j = 0; для цилиндра j = 1; для сферы j = 2; для прочих форм допускается j принимать равным единице.

4.4.3. Определить безразмерное время индукции по формуле

$$\tau = \frac{\delta}{3(1+j)} \left\{ \frac{\ln[12(1+j)\sqrt{\theta_0}e^{\theta_\bullet}(\theta_0 - \theta_\bullet) - 3\sqrt{\pi\delta}]}{\theta_0 - \theta_\bullet} - \frac{\ln[12(1+j)\sqrt{\theta_0}\theta_0 - 3\sqrt{\pi\delta}]}{\theta_0} \right\} + 1.$$
(37)

4.4.4. Определить размерное время индукции

$$t_{\rm H} = \frac{\tau c R T_{\rm H}^2}{Q k_0 E} e^{\frac{E}{R} T_{\rm H}}.$$
 (38)

Литература

- 1. ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.
- ГОСТ 12.1.004-91*. ССБТ. Пожарная безопасность.
 Общие требования.

Пример расчета кинетических параметров

Рассчитать энергию активации и предэкспоненциальный множитель для реакции окисления хлопка по экспериментальным данным, приведенным в первых двух столбцах табл. П 1.1.

Коэффициент теплопроводности хлопка $\lambda = 0.042~\mathrm{Br/(m\cdot K)};$ теплоемкость $c=1505~\mathrm{Дж/(kr\cdot K)};$ тепловой эффект реакции $Q=1.75\cdot10^7~\mathrm{Дж/kr};$ плотность упаковки материала $\rho=80~\mathrm{kr/m}^3.$

Расчет проведем для образца размером $D=35\,$ мм. Данные для других размеров получим, повторяя приведенную ниже последовательность расчета.

1. По уравнениям (1) и (2) для каждого размера образца вычислим число Рэлея. Принимая в первом приближении энергию активации $E=100\,000$ Дж/моль, для образца размером $D=35\,$ мм получим:

Ra = 1,2·10⁸
$$e^{\frac{1770}{T_0}} D^3 \frac{RT_0}{E} =$$

= 1,2·10⁸ $e^{\frac{1770}{485}} (3,5·10^{-2})^3 \frac{8,314·485}{100000} = 7978.$

Коэффициент теплоотдачи α найдем по уравнению (3):

$$\alpha = 0.54 \text{Ra}^{0.25} \frac{\lambda_e}{D} + 4\sigma T_0^3 =$$

=
$$0.54 \cdot 7978^{0.25} \frac{0.038}{0.035} + 4 \cdot 5.67 \cdot 10^{-8} \cdot 485^{3} =$$

= $31.4 \text{ BT/(M}^{2} \cdot \text{K)}.$

где теплопроводность воздуха определена по формуле (5):

$$\lambda_{\sigma} = 6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} T_0 =$$

= $6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} \cdot 485 = 0.038 \text{ BT/(M} \cdot \text{K)}.$

Вычислим критерий Био, соответствующий размеру и коэффициенту теплоотдачи образца

Bi =
$$\frac{\alpha r}{\lambda} = \frac{31,4 \cdot 0,035}{2 \cdot 0,042} = 13,1.$$

 Величина функции ф₁ (Ві), учитывающей интенсивность теплообмена образца с воздухом, для полученного значения Ві будет:

$$\begin{split} &\phi(\mathrm{Bi}) = \frac{\mathrm{Bi}}{2} \left(\sqrt{\mathrm{Bi}^2 + 4} - \mathrm{Bi} \right) \exp \frac{\sqrt{\mathrm{Bi}^2 + 4} - \mathrm{Bi} - 2}{\mathrm{Bi}} = \\ &= \frac{13,1}{2} \left(\sqrt{13,1^2 + 4} - 13,1 \right) \exp \left(\frac{\sqrt{13,1^2 + 4} - 13,1 - 2}{13,1} \right) = 0,863 \,. \end{split}$$

5. Рассчитаем параметры в и у:

$$\beta = \frac{RT_0}{E} = \frac{8,314 \cdot 485}{100000} = 4 \cdot 10^{-2};$$

$$\gamma = \frac{cRT_0^2}{OE} = \frac{1505 \cdot 8,314 \cdot 485^2}{1,75 \cdot 10^7 \cdot 100000} = 1,68 \cdot 10^{-3}.$$

6. Критическое значение параметра Франк-Каменецкого $\delta_{kp} = \delta_0 \phi(\text{Bi})(1 + \beta)(1 + 2, 4\gamma^{2/3}) =$

$$= 2,52 \cdot 0,863(1+0,04)\left(1+2,4\cdot 0,00168^{\frac{1}{2}}\right) = 2,34.$$

Результаты вычислений для всех образцов представлены в табл. П 1.1.

Таблица П 1.1

Размер г, м	<i>T</i> ₀ ,	Ra	α, Bπ/м²⋅K	Bi	φ(Bi)	β · 10 ⁻²	γ · 10 ⁻³	$\delta_{\kappa p}$
0,0175	485	7978	31,4	13.1	0.863	4.00	1,68	2,34
0,025	475	24 599	29,4	17,5	0,895	3.95	1,61	2,42
0,035	466	71 161	27,6	23.0	0.918	3,87	1.55	2,48
0,05	456	260 650	25,9	30,8	0.938	3,79	1,49	2,53
0,07	445	646 034		40,0	0.952	3,70	1,42	2,56
0,10	436	2 016 710		53.3	0,964	3,62	1,36	2,59

7. По уравнению (13) для каждого размера образца рассчитаем величину *M*:

$$M = \frac{\delta_{xp}RT_0^2}{r^2\rho} = \frac{2,34 \cdot 8,314 \cdot 485^2}{(1,75 \cdot 10^{-2})^2 \cdot 80} = 1,87 \cdot 10^8.$$

- 8. С помощью этих значений и уравнения (12) методом наименьших квадратов определим численные значения N и энергию активации E.
- 9. Вычислим предэкспоненциальный множитель реакции окисления Qk_0/λ путем деления N на E. Данные расчетов по пп. 7–9 сведем в табл. П 1.2.

Табљица П 1.2

Размер	<i>T</i> ₀ , K	<i>М</i> ,	N,	Е,	<i>Qk</i> ₀ / λ,
<i>r</i> , м		Дж · м · К/кт · моль	Дж · м · К/кг · моль	Дж/моль	м ⋅ Κ/κг
0,0175 0,025 0,035 0,05 0,07 0,10	485 475 466 456 446 436	1,87 · 10 ⁸ 9,08 · 10 ⁷ 4,57 · 10 ⁷ 2,19 · 10 ⁷ 1,08 · 10 ⁷ 5,12 · 10 ⁶	1,38 · 10 ²²	128 980	1,07 · 10 ¹⁷

10. Повторяя расчет по пп. 1–9 с величиной энергии активации $E=128\,980\,$ Дж/моль, найдем новые значения энергии активации $E=128\,950\,$ Дж/моль и предэкспоненциального множителя $Qk_0/\lambda=1,05\cdot 10^{17}\,$ м · К/кг. Так как последние величины практически не отличаются от предыдущих, процесс итераций следует прекратить и за кинетические параметры реакции окисления хлопка принять

 $E = 128950 \text{ Дж/моль}, Qk_0 / \lambda = 1.05 \cdot 10^{17} \text{ м} \cdot \text{К/кг}.$

ПРИЛОЖЕНИЕ 2

Параметры кинетики процесса термоокисления некоторых материалов

Материал	<i>Е</i> , Дж/моль	<i>Qk</i> ₀ / λ, м ⋅ Κ/κΓ
Дрожжи кормовые	256 212	5,11 · 10 ³⁰
Дрожжи товарные		
(влажн. 8 %)	106 144	5,94 · 10 ¹⁴
Дрожжи товарные		
(влажн. 15 %)	92 285	1,67 · 10 ¹³
Мука ржаная	88 054	$6,55 \cdot 10^{11}$
Мука костная крупнозернистая	50 740	2,46 · 10 ⁸
Пыль костной муки	71 623	8,67 · 10 ¹⁰
Сено	179 050	8,67 · 10 ²²
Хлопок	128 950	1,05 · 10 ¹⁷
Льноджутовое волокно	63 134	4,826 · 109
Метионин кормовой	88 278	$2,35 \cdot 10^{10}$
Древесно-волокнистая плита	100 974	8,24 · 10 ¹⁰
Уголь-сырец марки А	71 280	4,31 · 10 ¹¹
Уголь ОУ-А	101 458	$2,82 \cdot 10^{15}$
Уголь ОУ-Б	97 650	2,01 · 10 ¹³
Уголь-сырец после сортировки	101 450	$2,82 \cdot 10^{15}$
Технический углерод К354	56 943	4,343 · 10 ¹²
Технический углерод Н 990	90 732	5,665 · 10 ¹⁴

Примеры расчета критических параметров самовозгорания для материалов, имеющих при складировании температуру окружающей среды

3.1п. Пример расчета бо штабеля

Рассчитать δ_0 штабеля. Штабель представляет собой параллелепипед шириной 4,8 м, длиной 15,7 м и высотой 4 м.

 Отношение квадратов полувысоты штабеля к эквивалентной сфере Франк-Каменецкого рассчитаем как для прямоугольного бруса по выражению (16):

$$\frac{a^2}{{R_0}^2} = \frac{2}{3\pi} \left[\arctan \left(\frac{pq}{\sqrt{1+p^2+q^2}} \right) + \right. \\ \left. + \frac{1}{p^2} \arctan \left(\frac{q}{p\sqrt{1+p^2+q^2}} \right) + \Psi \right],$$
 где $\Psi = \frac{1}{q^2} \arctan \left(\frac{p}{q\sqrt{1+p^2+q^2}} \right) + \frac{\sqrt{1+p^2+q^2}}{pq}; \ a,b,c$ — половины сторон бруса; a — наименьшая сторона; $p = b/a$,

ловины сторон бруса; a — наименьшая сторона; p = b/a q = c/a.

Подставляя р и q в эти равенства, получим

$$\frac{a^2}{R_0^2} = 0,467.$$

2. Средний радиус эквивалентной сферы Семенова

$$R_c = \frac{3V}{S} = \frac{3 \cdot 4.8 \cdot 15.7 \cdot 4}{2(4.8 \cdot 15.7 \cdot 4 + 4.8 \cdot 4)} = 2.873,$$

где V, S – объем и поверхность штабеля соответственно.

 На основании формул (16)—(18) отношение квадратов радиусов эквивалентных сфер Франк-Каменецкого и Семенова будет

$$\sigma = \frac{R_0^2}{R_c^2} = \frac{a^2}{0,467 \cdot 2,857^2} = \frac{2^2}{0,467 \cdot 2,873^2} = 1,04.$$

 Фактор формы прямоугольного бруса в соответствии с выражением (19):

$$i = 3\sigma - 1 = 3 \cdot 1.04 - 1 = 2.12$$
.

5. Согласно выражению (20)

$$F(j) = \frac{(2j+6)}{(j+7)} = \frac{2 \cdot 2,12+6}{2,12+7} = 1,122.$$

6. Расчет по формуле (21) показывает, что

$$\delta_0 = \frac{3F(j)a^2}{R_0^2} = 3 \cdot 1,122 \cdot 0,467 = 1,571.$$

3.2п. Пример расчета критической температуры

Рассчитать критическую температуру окружающей среды при складировании хлопка в штабель. Штабель представляет собой параллелепипед шириной 4,8 м, длиной 15,7 м и высотой 4 м.

Исходными данными для расчета являются:

- плотность материала $\rho = 80 \text{ кг/м}^3$;
- коэффициент теплопроводности материала $\lambda = 0.042 \, \text{Br/m} \cdot \text{K}$:
 - теплоемкость исследуемого материала c = 1505 Дж/кг · K;
 - теплота реакции $Q = 1.75 \cdot 10^7 \,\text{Дж/кг}$;
- энергия активации реакции окисления E=128950 Дж/моль;

- предэкспоненциальный множитель $Qk_0/\lambda = 1.05 \cdot 10^{17}$, K/M^2 .
- 1. Подставим полученную в п. 3.1п величину δ_0 для штабеля в формулу (11) вместо $\delta_{\rm kp}$ и, решив его относительно T_0 , получим нулевое приближение для этой температуры, равное 310 К.
 - 2. С помощью полученной величины рассчитаем:

$$\gamma = \frac{cRT_0^2}{QE} = \frac{1505 \cdot 8,314 \cdot 310^2}{1,75 \cdot 10^7 \cdot 128950} = 0,0005$$
 — параметр, опре-

деляющий выгорание вещества, и

$$\beta = \frac{RT_0}{E} = \frac{8,314 \cdot 310}{128\,950} = 0,019$$
 — параметр, характеризующий реакцию окисления.

3. Так как для размеров упаковок, превышающих 1 м, $\phi(Bi)\approx 1$, безразмерное значение критического параметра Франк-Каменецкого, учитывающего выгорание вещества и свойства реакции горения, определим по формуле

$$\begin{split} \delta_{\kappa p} &= \delta_0 \left(1 + 2.4 \gamma^{2/3} \right) \! \! \left(1 + \beta \right) = \\ &= 1.571 \! \left(1 + 2.4 \cdot 0.0005^{2/3} \right) \! \! \left(1 + 0.019 \right) = 1.63. \end{split}$$

4. Решая уравнение (11) относительно температуры, получим $T_0=362\,$ К или 87 °C. Используя это значение T_0 , повторим процедуру расчетов параметров по пп. 1–3. Новое значение критической температуры равно 362,7 К и отличается от предыдущего менее чем на 1 °C. Следовательно, самовозгорание штабеля хлопка с характеристическим размером 2 м возможно при температурах воздуха выше 88 °C.

3.3п. Пример расчета времени индукции

Рассчитать время индукции при складировании угля марки ОУ-А в террикон (конус) при температуре 40 °C (313 K). Высота террикона h=8 м. Радиус основания террикона $r_0=20$ м.

Исходными данными для расчета являются:

- температура складирования материала $T_0 = 313 \text{ K}$;
- фактор формы складирования j = 1;
- минимальный размер укладки r = 4 м;
- плотность упаковки материала $\rho = 750 \text{ кг/м}^3$;
- коэффициент теплопроводности материала $\lambda = 0.056 \, \mathrm{Br/(m \cdot K)};$
- теплоемкость исследуемого материала $c = 1045 \,\mathrm{Дж/(kr\cdot K)};$
 - теплота реакции $Q = 4,4 \cdot 10^6$ Дж/кг;
- энергия активации реакции окисления $E = 101458 \, \text{Дж/моль};$
- предэкспоненциальный множитель $Qk_0/\lambda = 2.82 \times 10^{15} \text{ K/m}^2$.

Рассчитаем по формуле (22) значение параметра δ₀:

$$\delta_0 = 3,63Z^{-1,33} = 3,63 \left(\frac{20}{8}\right)^{-1,33} = 1,07.$$

- 1. Подставим полученную величину δ_0 для террикона в формулу (11) вместо $\delta_{\kappa p}$ и, решив его относительно температуры, получим нулевое приближение для нее, равное 284 К.
 - 2. С помощью полученной величины рассчитаем:

$$\gamma = \frac{cRT_0^2}{QE} = \frac{1045 \cdot 8,314 \cdot 284^2}{4,4 \cdot 10^6 \cdot 101458} = 0,0015$$
 — параметр, опре-

деляющий выгорание вещества, и

$$\beta = \frac{RT_0}{E} = \frac{8,314 \cdot 284}{101458} = 0,023 - \text{параметр, характери- 3 ующий реакцию окисления.}$$

3. Так как для размеров упаковок, превышающих 1 м, $\phi(Bi) \approx 1$, безразмерное значение критического параметра Франк-Каменецкого, учитывающего выгорание вещества и свойства реакции горения, определим по формуле

$$\delta_{\kappa p} = \delta_0 \left(1 + 2.4 \gamma^{2/3} \right) (1 + \beta) =$$

$$= 1.07 \left(1 + 2.4 \cdot 0.0015^{2/3} \right) (1 + 0.023) = 1.129.$$

- 4. Решая уравнение (11) относительно температуры, получим $T_{\rm kn}$ = 285 К или 10 °C.
- 5. По температуре T_0 вычислим параметры β и γ с помощью формул (8) и (9).

$$\beta = \frac{RT_0}{E} = \frac{8,314 \cdot 313}{101458} = 0,025;$$

$$\gamma = \frac{cRT_0^2}{QE} = \frac{1045 \cdot 8,314 \cdot 313^2}{44 \cdot 10^6 \cdot 101458} = 0,0019.$$

6. По уравнениям (1) и (2) найдем число Рэлея.

Ra = 1,2 · 10⁸
$$e^{1770/T_0} D^3 \frac{RT_0}{E}$$
 =
= 1,2 · 10⁸ $e^{1770/313} \cdot 8^3 \frac{8,314 \cdot 313}{101458}$ = 4,5 · 10¹¹.

Коэффициент теплоотдачи α определим по уравнению (4):

$$\alpha = 0.135 \text{Ra}^{0.333} \frac{\lambda_e}{D} + 4\sigma T_0^3 = 0.135(4.5 \cdot 10^{11})^{0.333} \frac{0.027}{8} + 4 \cdot 5.67 \cdot 10^{-8} \cdot 313^3 = 10.4 \text{ Br/(m}^2 \cdot \text{K)},$$

где теплопроводность воздуха рассчитана по формуле (5):

$$\lambda_a = 6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} T_0 =$$

= $6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} \cdot 313 = 0.027 \text{ Bt/(m} \cdot \text{K)}.$

8. Вычислим критерий Био, соответствующий размеру и коэффициенту теплоотдачи скопления материала:

Bi =
$$\frac{\alpha r}{\lambda} = \frac{10,4 \cdot 4}{0,056} = 743$$
.

9. По формуле (11) рассчитаем параметр δ , соответствующий температуре T_0 , и параметр $\delta_{\rm кp}$ для критической температуры $T_{\rm kp}$:

$$\delta = \frac{Q\rho k_0}{\lambda} \frac{E}{RT_0^2} r^2 e^{-\frac{E}{RT_0}} =$$

$$= 2.82 \cdot 10^{15} \cdot 750 \frac{101458}{8.314 \cdot 313^2} \cdot 4^2 e^{-\frac{101458}{8.314 \cdot 313}} = 49.3;$$

$$\delta_{\text{sp}} = \frac{Q\rho k_0}{\lambda} \frac{E}{RT_{\text{sp}}^2} r^2 e^{-\frac{E}{RT_{\text{sp}}}} =$$

$$= 2.82 \cdot 10^{15} \cdot 750 \frac{101458}{8.314 \cdot 285^2} \cdot 4^2 e^{-\frac{101458}{8.314 \cdot 313}} = 1.29.$$

 Вычислим относительное удаление от предела воспламенения

$$\Delta = \frac{\delta}{\delta_{np}} = \frac{49,3}{1,29} = 38,2$$

и функции

$$f_1(\Delta, \gamma) = 1 + 0.62 \frac{1 - 4\Delta^{-2} \sqrt{\gamma}}{\Delta - 0.95^{0.9}} =$$

$$= 1 + 0.62 \frac{1 - 4 \cdot 38.2^{-2} \sqrt{0.0019}}{(38.2 - 0.95)^{0.9}} = 1.024;$$

$$f_2(j, Bi, \Delta) = 1 - \frac{[1 + 1.5(1 - 0.1\Delta) j]Bi}{16(1 + Bi)} =$$

$$= 1 - \frac{[1 + 1.5(1 - 0.1 \cdot 38.2) \cdot 1] \cdot 743}{16(1 + 743)} = 1.202.$$

 Рассчитаем безразмерное время индукции по выражению

$$\tau = f_1(\Delta, \gamma) f_2(j, Bi, \Delta) (1 + 2\beta) =$$

= 1,024 \cdot 1,202(1 + 2 \cdot 0,025) = 1,292.

12. Определяем размерное время индукции (t_{s} , c) по формуле

$$t_{\rm H} = \frac{\tau c R T_0^2}{Q k_0 E} e^{\frac{E}{R} T_0} = \frac{1,202 \cdot 1045 \cdot 8,314 \cdot 313^2}{2,82 \cdot 10^{15} \cdot 0,056 \cdot 101458} e^{\frac{10145}{R},314 \cdot 313} =$$

$$= 5.463961c = 63 \text{ cyr } 5,8 \text{ q.}$$

3.4п. Пример расчета критического и безопасного размеров

Рассчитать минимальный безопасный размер штабеля при складировании древесно-волокнистых плит.

Расчет проведем для верхней границы диапазона климатического перепада температур воздуха в средней полосе России, равной 40 °C или 313 К.

Исходными данными для расчета критического размера являются:

- плотность упаковки материала $\rho = 270 \text{ кг/м}^3$;
- коэффициент теплопроводности материала $\lambda = 0.05 \text{ BT/(M} \cdot \text{K});$
- теплоемкость исследуемого материала $c = 1400 \, \text{Дж/(kr \cdot K)};$
 - теплота реакции $Q = 5.5 \cdot 10^5$ Дж/кг;
- энергия активации реакции окисления $E = 100\,974\,$ Дж/моль;
- предэкспоненциальный множитель $Qk_0/\lambda = 3\cdot 10^{14}$, м · К/кг.
- 1. Задавая форму штабеля аналогичной применяемой на практике согласно примеру 3.1п, получаем $\delta_0 = 1,571$.
- 2. Для температуры $T_0 = 313$ К вычисляем параметры β и γ по уравнениям (8) и (9).

$$\beta = \frac{RT_0}{E} \frac{8,314 \cdot 313}{100\,974} = 0,025;$$

$$\gamma = \frac{cRT_0^2}{OE} = \frac{1400 \cdot 8,314 \cdot 313^2}{5.5 \cdot 10^5 \cdot 100\,974} = 0,02.$$

3. Считая $\phi(Bi) = 1$, определим параметр $\delta_{\kappa p}$ по формуле

$$\begin{split} &\delta_{\kappa p} = \delta_0 (1+\beta) \bigg(1 + 2.4 \gamma^{\frac{2}{3}} \bigg) = \\ &= 1.571 (1+0.025) \bigg(1 + 2.4 \cdot 0.02^{\frac{2}{3}} \bigg) = 1.895. \end{split}$$

 В первом приближении минимальный размер найдем из выражения (28):

$$r = \sqrt{\frac{\lambda R T_0^2 \delta_{\text{xp}} e^{E/RT_0}}{EQk_0}} = \sqrt{\frac{8,314 \cdot 313^2 \cdot 1,895 e^{\frac{100974}{8,314 \cdot 313}}}{100\,974 \cdot 3 \cdot 10^{14} \cdot 270}} = 3,66 \text{ m.}$$

5. По уравнениям (1) и (2) для полученного размера вычислим число Рэлея.

Ra =
$$1.2 \cdot 10^8 e^{\frac{1770}{T_0}} D^3 \frac{RT_0}{E} =$$

= $1.2 \cdot 10^8 e^{\frac{1770}{313}} \cdot 7.32^3 \frac{8.314 \cdot 313}{100974} = 3.46 \cdot 10^{11}$.

6. Коэффициент теплоотдачи а найдем по уравнению (4):

$$\alpha = 0.135 \text{Ra}^{0.333} \frac{\lambda_{\sigma}}{D} + 4\sigma T_0^3 = 0.135(3.46 \cdot 10^{11})^{0.333} \frac{0.027}{7.32} + 4 \cdot 5.67 \cdot 10^{-8} \cdot 313^3 = 10.42 \text{ BT/(M}^2 \cdot \text{K)},$$

где теплопроводность воздуха определена по формуле (5):

$$\lambda_{,a} = 6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} T_0 =$$

= $6.98 \cdot 10^{-3} + 6.41 \cdot 10^{-5} \cdot 313 = 0.027 \text{ B}\text{T/(M} \cdot \text{K)}.$

7. Вычислим критерий Био, соответствующий размеру и коэффициенту теплоотдачи

Bi =
$$\frac{\alpha r}{\lambda} = \frac{10,42 \cdot 3,66}{0,05} = 763.$$

Величина функции φ(Bi), учитывающей интенсивность теплообмена материала с воздухом, для полученного значения Bi:

$$\phi(Bi) = \frac{Bi}{2} \left(\sqrt{Bi^2 + 4} - Bi \right) \exp \frac{\sqrt{Bi^2 + 4} - Bi - 2}{Bi} =$$

$$= \frac{763}{2} \left(\sqrt{763^2 + 4} - 763 \right) \exp \left(\frac{\sqrt{763^2 + 4} - 763 - 2}{763} \right) =$$

$$= 0.997.$$

9. Критическое значение параметра Франк-Каменецкого

$$\begin{split} \delta_{\kappa p} &= \delta_0 \phi (\text{Bi}) (1 + \beta) \left(1 + 2.4 \gamma^{\frac{2}{3}} \right) = \\ &= 1.571 \cdot 0.997 (1 + 0.025) \left(1 + 2.4 \cdot 0.02^{\frac{2}{3}} \right) = 1.89 \; . \end{split}$$

 По формуле (28) вычислим новое значение размера штабеля материала

$$r = \sqrt{\frac{8,314 \cdot 313^2 \cdot 1,89e^{\frac{100974}{8,314 \cdot 313}}}{100974 \cdot 3 \cdot 10^{14} \cdot 270}} = 3,655 \text{ m}.$$

- 11. Сравнивая с величиной r, полученной в п. 4 (3.4п), видим, что разность составляет не более 5 %. Критический размер штабеля $r_{\text{кр}}$ равен 3,655 м.
- 12. Согласно п. 3.4 в качестве безопасного размера принимаем 0,8 г_{кр} = 2,92 м. То есть формирование штабеля древесно-волокнистых плит с минимальным размером не более 5,84 м не приведет к его самовозгоранию.

Примеры расчета критических параметров самовозгорания для предварительно прогретых материалов

4.1п. Пример расчета δκρ

Рассчитать δ_{xp} штабеля, состоящего из 80 предварительно прогретых древесно-волокнистых плит. Толщина одной плиты 12,5 мм. Штабель представляет собой параллелепипед шириной 1,22 м, длиной 2,44 м и высотой 1 м. Характеристики материала соответствуют приведенным в примере 3.4п. Температура предварительного прогрева составляет 100 °C. Температура воздуха 40 °C.

 Безразмерная разность температур материала и окружающей среды (температурный напор очага) согласно (29) составляет:

$$\theta_0 = \frac{E}{RT_{\rm H}^2}(T_{\rm H} - T_0) = \frac{100\,974}{8.314 \cdot 373^2}(373 - 313) = 5,24.$$

2. Отношение средней и меньшей сторон параллелепипеда p=1,22/1=1,22. Тогда по формуле (33) $e=50,1-118p+111p^2-45p^3+6,76p^4=$

 Значение критического параметра Франк-Каменецкого складируемых в штабель древесно-волокнистых плит согласно (31) составляет:

$$\delta_{KD} = \epsilon \ln(M\theta_0) = 4.61 \ln(2.14 \cdot 5.24) = 11.14$$

4.2п. Пример расчета критического и безопасного размеров

Рассчитать критический размер штабеля при складировании древесно-волокнистых плит. Штабель представляет собой параллелепипед шириной 1,22 м, длиной 2,44 м и высотой 1 м.

Исходными данными для расчета являются:

- температура окружающей среды $T_0 = 315 \text{ K}$;
- температура предварительного прогрева материала $T_{\rm H}$ = 375 K;
 - плотность упаковки материала $\rho = 270 \text{ кг/м}^3$;
- энергия активации реакции окисления $E=100\,974\,$ Дж/моль;
- предэкспоненциальный множитель $Qk_0/\lambda = 3 \times 10^{14}$, ${\rm K/m}^2$.
- 1. Рассчитаем критический размер складирования, подставив полученную в п. 4.1п величину $\delta_{\kappa p}$ для штабеля в формулу:

$$r_{\rm kp} = \sqrt{\frac{\lambda R T_{\rm H}^2 \delta_{\rm kp} e^{\frac{E}{R} T_{\rm H}}}{EQ k_{\rm 0} \rho}} = \sqrt{\frac{8,314 \cdot 375^2 \cdot 11,14e^{\frac{10097\%}{8,314375}}}{100\,974 \cdot 3 \cdot 10^{14} \cdot 270}} = 0,43 \text{ M}.$$

Поскольку критический размер меньше заданного (0,5 м), рассматриваемый штабель ДВП самовозгорится.

2. В соответствии с п. 4.2.3 безопасный размер штабеля ДВП для заданной температуры нагрева составит 0,34 м. То есть формирование штабеля высотой не более 0,68 м не приведет к его самовозгоранию.

4.3п. Пример расчета критической температуры прогрева материала

Рассчитать критическую температуру предварительного нагрева дрожжей кормовых, засыпаемых в цилиндрический бункер диаметром 1,5 м и высотой 4 м.

Исходными данными для расчета являются:

- температура окружающей среды $T_0 = 303$ K;
- плотность упаковки материала $\rho = 300 \text{ кг/м}^3$;
- энергия активации реакции окисления $E = 256212 \, \text{Дж/моль};$
- предэкспоненциальный множитель $Qk_0/\lambda = 5,11 \cdot 10^{30} \text{ м} \cdot \text{K/k}\text{г};$
- характеристический размер засыпки материала r = 0.75 м.
- 1. Принимаем температуру предварительного разогрева материала $T_{\rm H} = 483~{\rm K}.$
- 2. Согласно формуле (29) безразмерная разность температур материала и окружающей среды (температурный напор очага) составляет

$$\theta_0 = \frac{E}{RT_{\rm H}^2}(T_{\rm H} - T_0) = \frac{256\ 212}{8.314 \cdot 483^2}(483 - 303) = 23,78.$$

 Критическое значение параметра Франк-Каменецкого определяем по выражению (30):

$$\delta_{\text{KD}} = 9.87 (\ln \theta_0)^{0.71} = 9.87 (\ln 23.78)^{0.71} = 22.385.$$

4. Подставив полученную величину δ_{kp} в уравнение (35), определяем новое значение температуры T_H = 435,3 K.

- 5. Используя найденное значение $T_{\rm H}$, повторяем расчет параметров по пп. 2—4. Новое значение температуры $T_{\rm H}$ = 435,1 K.
- 6. Так как последнее значение отличается от предыдущего менее чем на 1 K, за критическую температуру принимается $T_{\kappa p}$ = 435 K = 162 °C.

4.3п. Пример расчета времени индукции

Рассчитать период индукции до самовозгорания штабеля древесно-волокнистых плит, прогретых до 102 °C, в форме параллелепипеда шириной 1,22 м, длиной 2,44 м и высотой 1 м.

Исходными данными для расчета являются:

- температура окружающей среды $T_0 = 315 \text{ K}$;
- температура предварительного прогрева материала $T_{\rm H} = 375~{\rm K};$
 - плотность упаковки материала $\rho = 270 \text{ кг/м}^3$;
- коэффициент теплопроводности материала $\lambda = 0.05 \, \mathrm{Br/(m \cdot K)};$
- теплоемкость исследуемого материала $c=1400~\mathrm{Дж/kr\cdot K};$
 - теплота реакции $Q = 5,5 \cdot 10^5$ Дж/кг;
- энергия активации реакции окисления E = 100974 Дж/моль;
- предэкспоненциальный множитель $Qk_0/\lambda=3\times 10^{14},\,\mathrm{K/m}^2.$
- 1. Подставив значения θ_0 и δ , полученные в п. 4.1п, в уравнение (36), методом итераций или с помощью программ для персональных компьютеров «Eureka», «Mathematica 3.0», «Маthematica 4.0» и др. рассчитаем критический температурный напор θ_{\bullet} в центре очага в момент воспламенения:

$$\theta_{\bullet} = 0.43.$$

 Определим безразмерное время индукции по форуле (37):

$$\tau = \frac{\delta}{3(1+j)} \left\{ \frac{\ln\left[12(1+j)\sqrt{\theta_0}e^{\theta_0}(\theta_0 - \theta_0) - 3\sqrt{\pi\delta}\right]}{\theta_0 - \theta_0} - \frac{\ln\left[12(1+j)\sqrt{\theta_0}\theta_0 - 3\sqrt{\pi\delta}\right]}{\theta_0} + 1 = \frac{1114}{3(1+1)} \left\{ \frac{\ln\left[12(1+1)\sqrt{5,24}e^{0,43}(5,24-0,43) - 3\sqrt{3,14\cdot11,14}\right]}{5,24-0,43} - \frac{\ln\left[12(1+1)\sqrt{5,24}\cdot5,24 - 3\sqrt{3,14\cdot11,14}\right]}{5,24} \right\} + 1 = 1,377.$$

 Определим размерное время индукции по выражепо (38):

$$t_{\rm H} = \frac{\tau c R T_{\rm H}^2}{Q k_0 E} e^{\frac{E}{R} T_{\rm H}} = \frac{1,377 \cdot 1400 \cdot 8,314 \cdot 375^2}{3 \cdot 10^{14} \cdot 0,05 \cdot 100} e^{\frac{10097}{8,314375}} =$$

 $= 173\,001\,c = 48,06\,\mathrm{y}.$

Редактор В.Н. Брешина Технический редактор Л.А. Буланова

Ответственный за выпуск И.А. Корольченко

Подписано в печать 13.03.2008 г. Формат 60×84/16. Печать офестная, Усл. печ. л. 2,79. Уч.-изд. л. 2,59. Т. — 300 экз. Заказ № 16.

Типография ФГУ ВНИИПО МЧС Россин мкр. ВНИИПО, д. 12, г. Балашиха, Московская обл., 143903