ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГРУНТЫ ТЕПЛИЧНЫЕ

Метод определения общей засоленности

ГОСТ

Greenhouse grounds.

Method for determination of total salt content

27753.4-88

OKCTY 0017

Срок действия с 01.01.90 до 01.01.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на тепличные грунты и устанавливает кондуктометрический метод определения общей засоленности при проведении контроля за солевым режимом грун-TOB.

Сущность метода заключается в измерении удельной электрической проводимости водной вытяжки из тепличных грунтов с помощью кондуктометра.

Предельное значение суммарной относительной погрешности результатов анализа при доверительной вероятности P = 0.95 составляет 16 %.

Общие требования к выполнению анализов — по ГОСТ 27753.0.

1. МЕТОД ОТБОРА ПРОБ

Метод отбора проб — по ГОСТ 27753.1.

2. АППАРАТУРА И РЕАКТИВЫ

Кондуктометр с диапазоном измерений от 0,01 до 20 мСм и погрешностью измерений не более 5 %.

Термометр лабораторный с диапазоном измерений от 0 до 55°C, с ценой деления 0,5°C по ГОСТ 215.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Калий хлористый по ГОСТ 4234.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление раствора хлористого калия молярной концентрации *с* (KCl) = 0,01 моль/дм³

(0,746±0,001) г хлористого калия, прокаленного до постоянной массы при температуре 500 °С, помещают в мерную колбу вместимостью 1000 см³ и растворяют в дистиллированной воде, доводя объем раствора до метки.

3.2. Определение константы кондуктометри-

ческой ячейки (датчика)

Датчик кондуктометра погружают в раствор хлористого калия молярной концентрации c (KCl) = 0,01 моль/дм³ и измеряют электрическую проводимость.

Константу датчика (C), см $^{-1}$, вычисляют по формуле

$$C=\frac{1.41}{a\cdot K}$$
,

- где 1.41 удельная электрическая проводимость раствора хлористого калия молярной концентрации c (KCl) = =0.01 моль/дм³ при 25 °C, мСм/см;
 - а измеренная электрическая проводимость раствора хлористого калия молярной концентрации c (KCl) = = 0.01 моль/дм³, мСм;
 - К коэффициент температурной поправки.

Если прибор имеет температурный компенсатор, коэффициент температурной поправки равен единице. При отсутствии температурного компенсатора измеряют температуру раствора хлористого калия с помощью лабораторного термометра и находят значение коэффициента по таблице.

Температура раствора, °С	K	Температура раст- вора, °С	К
15 16 17 18 19 20 21	1,254 1,224 1,196 1,168 1,142 1,118 1,092	23 24 25 26 27 28 29 30	1,044 1,021 1,000 0,979 0,960 0,941 0,923 0,906

3.3. Приготовление водной вытяжки из грунтов

Для анализа используют фильтраты или суспензии вытяжек, приготовленных по ГОСТ 27753.2.

4. ПРОВЕДЕНИЕ АНАЛИЗА

В фильтрат или суспензию погружают датчик кондуктометра и измеряют электрическую проводимость. После каждого измерения датчик тщательно промывают водой и промокают фильтровальной бумагой. Если прибор не имеет температурного компенсатора, измеряют температуру вытяжек или воды, находящейся в тех же условиях.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 5.1. Удельную электрическую проводимость анализируемой вытяжки (X) в миллисименсах на сантиметр вычисляют по формуле $X = a \cdot C \cdot K$
- где a измеренная электрическая проводимость вытяжки, мСм; C константа кондуктометрической ячейки (датчика), см $^{-1}$;
 - К коэффициент температурной поправки.
- 5.2. Допускаемое относительное отклонение при доверительной вероятности $P\!=\!0,\!95$ результатов двух повторных анализов от их среднего арифметического при выборочном контроле составляет 11 %.

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Государственным агропромышленным комитетом СССР

ИСПОЛНИТЕЛИ

- С. Г. Самохвалов, канд. с.-х. наук (руководитель темы); Н. В. Соколова; Н. В. Василевская, канд. с.-х. наук; А. П. Плешкова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта СССР от 23.06.88 № 2184
- 3. СРОК ПЕРВОЙ ПРОВЕРКИ 1993 г.
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУменты

Обозначение НТД, на который дана ссылка	Номер раздела, пункта	
FOCT 215—73 FOCT 4234—77 FOCT 24104—88 FOCT 27753.0—88 FOCT 27753.1—88 FOCT 27753.2—88	2 2 2 2 2 Вводная часть 1 3.3	