

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛО КВАРЦЕВОЕ ПРОЗРАЧНОЕ

МЕТОД ИСПЫТАНИЯ НА УСТОЙЧИВОСТЬ К КРИСТАЛЛИЗАЦИИ

FOCT 22290-76

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛО КВАРЦЕВОЕ ПРОЗРАЧНОЕ

Метод испытания на устойчивость к кристаллизации

Vitreous silica transparent glass Crystallization stability test method ГОСТ 22290—76*

ОКСТУ 5932

Постановлением Государственного комитета стандартов Совета Министров СССР от 30 декабря 1976 г. № 2945 срок действия установлен с 01.01.78

Проверен в 1982 г. Пост. Госстандарта от 25.09.86 № 2816 срок действия продлен

до 01.01.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на кварцевое прозрачное стекло и изделия из него и устанавливает метод испытания на устойчивость их к различным видам кристаллизации поверхности: точкам, рискам, пятнам или сплошным слоем.

Сущность метода заключается в выдерживании образцов при заданных (не менее 1000°С) температуре и времени и обнаружении на поверхности стекла следов кристаллизации или измерении толщины слоя кристаллизации.

(Измененная редакция, Изм. № 1).

1. МЕТОД ОТБОРА ОБРАЗЦОВ

- 1.1. Количество образцов для испытания устанавливают в нормативно-технической документации на кварцевое стекло или изделия из него.
- 1.2. По форме и размерам образцы должны соответствовать указанным в таблице.

Издание официальное

Перепечатка воспрещена

★ * Переиздание (август 1988 г.) с Изменениями № 1, 2, утвержденными в мае 1982 г. сентябре 1986 г. (ИУС 8—82, 12—86)

Испытуемое изделие	Форма и размер образца		
Кварцевое стекло в виде заготовок и изделия из кварцевого стекла Трубы и стержни	Заготовки, изделия или куск любой геометрической формы то менее 30×30 мм (или массой 2 г) Отрезки труб длиной от 40 д Трубы диаметром более 40 мм до разрезать по образующей цилиид		
	тора с хордой 30—50 мм испыт		

делия или куски от них ческой формы размерами мм (или массой не менее

длиной от 40 до 50 мм. м более 40 мм допускается азующей цилиндра на сектора с хордой 30-50 мм испытывать не менее четырех образцов, расположенных в отрезке трубы во взаимно перпендикулярных направлениях

(Измененная редакция, Изм. № 1).

1.3. Внешний вид испытуемых образцов стекла и изделий из него должен соответствовать требованиям, установленным нормативно-технической документацией на кварцевое стекло и изделия из него. На торцах труб и стержней испытуемых образцов не допускается выход открытых капилляров.

(Измененная редакция, Изм. № 2).

2. АППАРАТУРА И РЕАКТИВЫ

2.1. Электропечь сопротивления лабораторная СНОЛ-1,6.2,5.1,4/15 по ГОСТ 13474—79 или другая, обеспечивающая заданную температуру, с размерами рабочего пространства, соответствующими размерам сосуда для образцов.

Термометр термоэлектрический типа ТПП по ГОСТ 6616—74 или другого типа, обеспечивающий заданные условия испытания.

Потенциометр КСП-4 по ГОСТ 7164-78 или другой, обеспечивающий регулирование температуры с заданной погрешностью. Электрошкаф сушильный типа СНОЛ-2,5,2,5,2,5/2 по ГОСТ

13474—79 или другого типа, обеспечивающий температуру (120 ± 50) °C.

Микроскоп типов МБИ-3, МБС-1, МПД-1. Полам 211. лам 213, МИН-8.

Микрометр окулярный винтовой типа МОВ-1—15* по ГОСТ 7865—77.

Объект-микрометр типа ОМО по ГОСТ 7513-75.

(для образцов) из газонаплавленного Сосуды с крышками кварцевого стекла размерами, обеспечивающими размещение них образцов.

Штангенциркуль по ГОСТ 166-80.

Линейка измерительная металлическая по ГОСТ 427—75.

Шиппы с наконечниками в виде отрезков труб из прозрачного кварцевого стекла по ГОСТ 8680-73.

Калий двухромовокислый по ГОСТ 4220—75.

Кислота серная по ГОСТ 4204—77 или по ГОСТ 14262—78. Кислота фтористоводородная по ГОСТ 10484—78, 20%-ный раствор.

Вода дистиллированная по ГОСТ 6709—72. Спирт этиловый технический по ГОСТ 17299—78 или спирт этиловый ректификованный технический по ГОСТ 18300—72.

(Измененная редакция. Изм. № 1).

3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Доводят температуру печи до заданной.

3.2. Выдерживают образцы в течение 20 мин в хромовой смеси (насыщенном растворе двухромовокислого калия в серной кислоте), затем промывают дистиллированной водой.

Допускается промывать образцы последовательно в проточной

воде и в этиловом спирте.

3.1, 3.2. (Измененная редакция, Изм. № 1).

3.3. Проверяют внутреннюю поверхность сосудов и крышек на отсутствие следов кристаллизации внешним осмотром без применения увеличительных приборов при ненаправленном освещении на темном фоне.

3.4. Для первого испытания и при обнаружении на внутренней поверхности сосудов и крышек следов кристаллизации (после последующих испытаний) их выдерживают в течение 2 ч в 20%-ном растворе фтористоводородной кислоты, затем промывают дистиллированной водой.

3.5. Подготовленные образцы помещают щипцами по одному

в сосуд и закрывают сосуды крышками.

3.6. Сушат сосуды с образцами в сушильном шкафу при температуре от 100 до 120°C в течение 60 мин.

3.5, 3.6. (Измененная редакция, Изм. № 1).

3.7. (Исключен, Изм. № 1).

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. В печь, подготовленную в соответствии с п. 3.1, помещают сосуды с образцами и выдерживают при заданной температуре и времени, после чего их вынимают из печи и охлаждают на воздухе.

4.2. Образцы проверяют на наличие следов кристаллизации того или иного вида визуально, без применения увеличительных приборов, на темном фоне или с применением микроскопа. Требование о применении увеличительных приборов указывается в нормативно-технической документации на продукцию.

Результат испытания считают неудовлетворительным при об-

наружении следов кристаллизации.

(Измененная редакция, Изм. № 2).

C. 4 FOCT 22290-75

4.3. При нормировании толщины слоя кристаллизации в нормативно-технической документации на продукцию его толщину определяют под микроскопом в следующей последовательности:

готовят микроскоп для работы в отраженном свете и определяют цену деления окулярного микрометра с помощью объект микрометра для соответствующего увеличения объектива;

от образцов откалывают куски для рассмотрения поверхности на границе скола;

поверхность скола располагают нормально к оптической оси микроскопа;

осматривают слой кристаллизации по периметру скола образцов;

проводят не менее 10 измерений толщины слоя кристаллизации в нескольких точках по периметру скола;

за результат испытания толщины слоя кристаллизации принимают среднее арифметическое показателей 10 измерений, отличающихся от среднего не более чем на 10%.

4.2, 4.3. (Измененная редакция, Изм. № 1).

4.4—4.6. (Исключены, Изм. № 1).

Редактор Т. П. Шашина Технический редактор М. М. Герасименко Корректор Л. В. Сницарчук

Сдано в наб 01 11 88 Подн в неч 01 02 89 0,5 усл п л 0,5 усл кр отт 0,21 уч изд л Тираж 5000 Цена 3 кол

	Единица						
Величина	Наименование	Обозначение					
	Tianmenosagne	международное	русское				
основные единицы си							
Длина	метр	m	M				
Масса	килограмм	kg	Kľ				
Время	секунда	s	c				
Сила электрического тока	ампер	A (A				
Термодинамическая температура	кельвин	К	K				
Количество вещества	моль	mol	моль				
Сила света	кандела	cd	кд				
дополнительные единицы си							
Плоский угол	радиан	rad	рад				
Телесный угол	стерадиан	sr	ср				

производные единицы си, имеющие специальные наименования

	Единица			Burnayana wasan
Величина	Наименова-	Обозначение		Выражение через основные и до-
wein three	ние	междуна- родное	русское	лолнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N	н	M·KF·C ⁻²
Давление	паскаль	Pa	Πα	M ⁻¹ · Kr · C ⁻²
Энергия	джоуль	J	Дж	M ² ·KF·C ^{−2}
Мощность	ватт	W	Вт	M ² ·Kr·C ^{~3}
Количество электричества	кулон	C	Kπ	c·A
Электрическое напряжение	вольт	V	В	M2·KL·C-3· V -1
Электрическая емкость	фарад	F	Ф	M-2Kr-1 · C 4 · A2
Электрическое сопротивление	ОМ	Ω	OM	M2.Kr.c-3.A-2
Электрическая проводимость	сименс	S	CM	M ⁻² kr ⁻¹ ⋅c³⋅A²
Поток магнитной индукции	вебер	Wb	Вб	M ² ⋅ Kr ⋅ C ⁻² ·A ⁻¹
Магнитная индукция	теслα	Т	Тл	кг∙с-2 · А-1
Индуктявность	генри	H	Гн	M2.KF C-2.A-2
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	$1_{\rm X}$	лк	м <i>−</i> ² ид ср
Активность радионуклида	беккерель	Bq	Бк	c-1
Поглощенная доза ионизирую-	йєцт	Gy	Гр	M² · C-2
щего излучения Экривалентная доза излучения	зиверт	Sv	3e	M² · C−3