КАДМИЙ

Методы определения цинка

ГОСТ 12072.3—79

Cadmium.

Methods of zinc determination

ОКСТУ 1709

Дата введения 01.12.80

Настоящий стандарт устанавливает полярографический и атомно-абсорбционный методы определения цинка (при массовой доле цинка от 0,0005 % до 0,3 %).

Стандарт полностью соответствует СТ СЭВ 915—78.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа и требования безопасности — по ГОСТ 12072.0. (Измененная редакция, Изм. № 2).

2. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на экстрагировании цинка эфиром в виде роданистого комплекса и полярографировании цинка на аммонийно-аммиачном фоне при потенциале полуволны минус 1,45 В, на фоне раствора ортофосфорной кислоты при потенциале полуволны минус 1,3 В по отношению к насыщенному каломельному электроду.

2.2. Аппаратура, материалы и реактивы

Полярограф осциплографический или полярограф переменного тока со всеми принадлежностями.

Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 1:9.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота ортофосфорная по ГОСТ 6552, раствор 0.03 моль/дм³.

Кислота серная по ГОСТ 4204, разбавленная 1:1. 1:9 и раствор 0.5 моль/дм³.

Водорода перекись (пероксид) по ГОСТ 10929.

Аммиак водный по ГОСТ 3760.

Аммоний роданистый по ГОСТ 27067, раствор 600 г/дм 3 .

Аммоний хлористый по ГОСТ 3773.

Натрий сернистокислый по ТУ 6—09—5313.

Аммиачный фоновый электролит: в склянку вместимостью 1 дм^3 помещают 50 г хлористого аммония, 20 г сернистокислого натрия, приливают 500 см^3 воды, перемешивают, приливают 50 см^3 аммиака, 10 см^3 раствора желатина, доливают до объема 1 дм^3 водой и перемешивают.

Срок годности фонового электролита — 7 дней.

Желатин пищевой по ГОСТ 11293, раствор 5 г/дм³, свежеприготовленный.

Аммоний ванадиевокислый мета по ГОСТ 9336, насыщенный раствор.

Промывной раствор: к 100 см^3 раствора серной кислоты $0,5 \text{ моль/дм}^3$ прибавляют 25 см^3 раствора роданистого аммония и перемешивают.

Эфир этиловый (медицинский) или эфир изопропиловый по ТУ 6-09-3704.

Азот газообразный по ГОСТ 9293. Азот очищают от кислорода следующим образом: струю азота пропускают через три склянки, содержащие на дне амальгаму цинка и наполненные насыщенным

Издание официальное

Перепечатка воспрещена

*

С. 2 ГОСТ 12072.3—79

раствором ванадиевокислого аммония в растворе серной кислоты, разбавленной 1:9, и предварительно восстановленного амальгамой цинка (фиолетовая окраска).

Цинка амальгама: 200 г цинка обрабатывают в толстостенном сосуде в смеси, содержащей $10~{\rm cm}^3$ ртути и $50~{\rm cm}^3$ серной кислоты, разбавленной 1:9.

Цинк по ГОСТ 3640.

Ртуть по ГОСТ 4658.

Стандартные растворы цинка.

Раствор А: навеску цинка массой 0,250 г растворяют в мерной колбе вместимостью 500 см³ в 50 см³ соляной кислоты, разбавленной 1:1, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 0,5 мг цинка.

Раствор Б: в мерную колбу вместимостью 500 см^3 отмеривают пипеткой 20 см^3 раствора A, приливают 50 см^3 соляной кислоты, разбавленной 1:1, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,02 мг цинка.

Градуировочные растворы цинка (способ добавки стандартного раствора): к двум навескам кадмия отмеривают микропипеткой стандартный раствор цинка $\mathbf b$ согласно табл. 1, приливают по $10~\mathrm{cm}^3$ азотной кислоты, разбавленной 1:1, нагревают до растворения анализируемой пробы и выпаривают досуха. Далее поступают, как указано в п. 2.3.

Таблина 1

Марка кадмия	Масса навески,	Стандартный раствор	Количество добавленного стандартного раствора		Объем мерной колбы, см ³	Массовая концентрация
	•	раствор	см ³	МΓ	Konobi, em	цинка, мг/дм³
Кд0А	1,000	Б	0,25	0,005	25	0,2
Кд0А	1,000	Б	0,5	0,01	25	0,4
Кд0	1,000	Б	1,0	0,02	25	0,8
К д0	1,000	Б	2,0	0,04	25	1,6
К д1	1,000	Б	2,5	0,05	25	2,0
К д1	1,000	Б	3,5	0,07	25	2,8
Кд0С	1,000	Б	4,0	0,08	25	3,2
Кд1С	1,000	Б	5,0	0,1	25	4,0
Кд2С	0,200	A	0,4	0,2	50	4,0
Кд2С	0,200	A	0,8	0,4	50	8,0
Кд2С	0,200	A	1,2	0,6	50	12,0

2.3. Проведение анализа

В коническую колбу вместимостью 250 см^3 помещают навеску кадмия массой 1,000 г, приливают 10 см^3 азотной кислоты, разбавленной 1:1, и нагревают досуха. Приливают 5 см^3 соляной кислоты и выпаривают досуха.

К остатку приливают 20 см³ раствора серной кислоты 0,5 моль/дм³ раствор, нагревают до растворения солей, охлаждают, переливают в делительную воронку вместимостью 150 см³, приливают 5 см³ раствора роданистого аммония, доливают до объема 50 см³ водой, предварительно ополоснув колбу, в которой находилась проба, добавляют 50 см³ изопропилового или этилового эфира и встряхивают в течение 2 мин. Нижнюю водную фазу отбрасывают, а эфирный экстракт промывают 25 см³ промывного раствора в течение 10 с. Промывание экстракта повторяют. Эфирный экстракт переводят в коническую колбу вместимостью 100—250 см³ и отгоняют эфир на водяной бане.

К остатку прибавляют 2 см^3 серной кислоты, разбавленной 1:1, добавляют 5-6 капель азотной кислоты и раствор выпаривают досуха, периодически добавляя по 2 капли пероксида водорода.

При определении цинка на осциллографическом полярографе остаток обрабатывают 2—3 каплями аммиака, приливают 10 см³ фонового электролита, перемешивают и согласно табл. 1 количественно переводят в соответствующую мерную колбу, доливают до метки фоновым электролитом и перемешивают. Часть раствора заливают в полярографическую ячейку и проводят полярографирование цинка при оптимальном диапазоне тока и потенциале полуволны минус 1,45 В по отношению к насыщенному каломельному электроду. В аналогичных условиях проводят полярографирование градуировочных растворов цинка и растворов контрольных опытов.

При определении цинка переменнотоковым полярографическим методом к охлажденному остатку приливают 10 см³ раствора фосфорной кислоты, нагревают раствор до растворения солей, охлаждают, переводят в мерную колбу вместимостью 25 или 50 см³, доливают раствором фосфорной

кислоты до метки и перемешивают. Часть раствора заливают в полярографическую ячейку, продувают в течение 5 мин азотом (азот предварительно пропускают через склянки с ванадатом аммония) и проводят полярографирование при соответствующем диапазоне тока и потенциале пика минус 1,25—1,30 В по отношению к насыщенному каломельному электроду. В аналогичных условиях проводят полярографирование градуировочных растворов цинка и растворов контрольных опытов.

При расчете содержания цинка из значения высоты волны анализируемой пробы вычитают высоту волны контрольного опыта, а из значения высоты волны анализируемой пробы с добавкой — высоту волны анализируемой пробы и контрольного опыта.

2.1—2.3. (Измененная редакция, Изм. № 3).

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на измерении поглощения аналитической линии цинка при длине волны 213,8 нм с введением растворов анализируемых проб и градуировочных растворов в воздушно-ацетиленовое пламя. Навеску кадмия предварительно переводят в раствор кислотным разложением.

3.2. Аппаратура, материалы и реактивы

Атомно-абсорбционный спектрофотометр любой марки с источником излучения для цинка.

Воздух, сжатый под давлением $2 \cdot 10^5 - 6 \cdot 10^5$ Па (2-6 атм).

Ацетилен в баллоне.

Кислота азотная по ГОСТ 11125, разбавленная 1:1 и раствор 2 моль/дм³.

Стандартные растворы цинка.

Цинк по ГОСТ 3640 не ниже марки Ц2.

Раствор A: навеску цинка массой $0{,}100$ г помещают в стакан вместимостью 100 см 3 , приливают 10 см 3 раствора азотной кислоты, разбавленной $1{:}1$, нагревают до удаления оксидов азота, охлаждают, количественно переносят в мерную колбу вместимостью 1 дм 3 , доливают до метки водой и перемешивают.

 1 см^3 раствора содержит 0,1 мг цинка.

Раствор Б: 25 см³ раствора А переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,01 мг цинка.

Кадмий по ГОСТ 1467 или ГОСТ 22860, содержащий цинка не более $1 \cdot 10^{-4}$ %, раствор 100 мг/дм^3 ; 100 г кадмия в виде кусочков или стружки растворяют в $200-250 \text{ см}^3$ азотной кислоты. Кислоту приливают медленно небольшими порциями (примерно по 10 см^3). Если при добавлении очередной порции кислоты реакция идет замедленно, сливают образовавшийся раствор азотнокислого кадмия в другую колбу и продолжают разложение. Затем объединяют весь раствор, кипятят до удаления оксидов азота, разбавляют водой, переводят в мерную колбу вместимостью 1000 см^3 и перемешивают.

(Измененная редакция, Изм. № 1, 2, 3).

- 3.3. Проведение анализа
- 3.3.1. Навеску кадмия массой 1,000—5,000 г помещают в коническую колбу вместимостью 250 см³, приливают 15—25 см³ азотной кислоты, разбавленной 1:1, нагревают до полного растворения металла и удаления оксидов азота. Приливают 25 см³ воды, перемешивают, охлаждают, раствор количественно переводят в мерную колбу вместимостью 100 см³ и перемешивают. Раствор анализируемой пробы и градуировочные растворы вводят в воздушно-ацетиленовое пламя и измеряют поглощение аналитической линии цинка 213,8 нм по ГОСТ 12072.0.

При необходимости в растворе анализируемой пробы могут быть определены также содержания таллия, свинца, железа, меди и никеля.

3.3.2. Для построения градуировочного графика готовят две серии градуировочных растворов. І серия: в двенадцать из тринадцати мерных колб вместимостью 100 см^3 отмеривают 2,0; 5,0; $10,0 \text{ и } 20,0 \text{ см}^3$ раствора Б и 4,0; 6,0; 8,0; 10,0; 15,0; 20,0; $25,0 \text{ и } 30,0 \text{ см}^3$ раствора А (что соответствует 0,2; 0,5; 1,0; 2,0; 4,0; 6,0; 8,0; 10,0; 15,0; 20,0; 25,0; $30,0 \text{ мг/дм}^3$ цинка), в каждую из колб приливают 10 см^3 раствора азотной кислоты 2 моль/дм 3 , доливают до метки водой и перемешивают. Основой этих градуировочных растворов служит вода.

П серия: в четыре из пяти мерных колб вместимостью 100 см³ отмеривают 2,0; 5,0; 10,0 и 20,0 см³ раствора Б (что соответствует 0,2; 0,5; 1,0 и 2,0 мг/дм³ цинка); в каждую из колб приливают 10 см³ раствора азотной кислоты 2 моль/дм³, 50 см³ раствора кадмия 100 г/дм³, доливают до метки водой и перемешивают. Основой этих градуировочных растворов служит раствор кадмия. По

градуировочным растворам I серии измеряют растворы проб из навески массой 1,0—2,5 г, II серия градуировочных растворов служит для анализа растворов проб из навески массой 5 г.

При определении из одного раствора железа, свинца, таллия, меди и никеля в каждую из указанных выше колб одной из серий градуировочных растворов добавляют такие количества стандартных растворов элементов, которые бы соответствовали концентрациям их в градуировочных растворах.

3.3.1, 3.3.2. (Измененная редакция, Изм. № 1, 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю цинка (X), %, при полярографическом определении вычисляют по формуле

$$X = \frac{H \cdot V \cdot C}{h \cdot m \cdot 10000},$$

где H— высота волны цинка анализируемого раствора пробы, мм;

V— объем мерной колбы, см³;

h — высота волны цинка градуировочного раствора, мм;

C — массовая концентрация цинка в градуировочном растворе, мг/дм³;

m — масса навески, г.

(Измененная редакция, Изм. № 3).

4.2. Массовую долю цинка (X), %, при атомно-абсорбционном определении вычисляют по формуле

$$X = \frac{(C_1 - C_2) \cdot V}{m \cdot 10000},$$

где C_1 — массовая концентрация цинка в анализируемом растворе, мг/дм³;

 C_2 — массовая концентрация цинка в растворе контрольного опыта, мг/дм³;

m — масса навески, г;

V— объем мерной колбы, см³.

(Измененная редакция, Изм. № 1, 3).

4.3. Абсолютные допускаемые расхождения результатов параллельных определений и результатов анализа не должны превышать значений, приведенных в табл. 2.

Таблица 2

Массовая доля цинка, %	Допускаемое расхождение параллельных определений, %	Допускаемое расхождение результатов анализа, %
От 0,0005 до 0,0010 включ. Св. 0,0010 » 0,0040 »	0,0003 0,0005	0,0004 0,0006
» 0,0040 » 0,0040 »	0,0015	0,0020
» 0,010 » 0,040 »	0,003	0,004
» 0,040 » 0,100 »	0,010	0,013
» 0.10 » 0.30 »	0.02	0,03

(Измененная редакция, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.08.79 № 3230
- 3. Стандарт полностью соответствует СТ СЭВ 915-78
- 4. B3AMEH ΓΟCT 12072.3-71
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ГОСТ 1467—93	3.2	ГОСТ 9336—75	2.2
ΓΟCT 3118—77	2.2	ГОСТ 10929—76	2.2
ГОСТ 3640—94	2.2, 3.2	ГОСТ 11125—84	3.2
ΓΟCT 3760—79	2.2	ГОСТ 11293—89	2.2
ΓΟCT 3773—72	2.2	ΓΟCT 12072.0—79	1.1, 3.3.1
ΓΟCT 4204—77	2.2	ГОСТ 22860—93	3.2
ΓΟCT 4461—77	2.2	ГОСТ 27067—86	2.2
ΓΟCT 4658—73	2.2	ТУ 6—09—3704—74	2.2
ΓΟCT 6552—80	2.2	ТУ 6—09—5313—87	2.2
ΓΟCT 9293—74	2.2		

- 6. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 7. ИЗДАНИЕ с Изменениями № 1, 2, 3, утвержденными в феврале 1981 г., августе 1984 г., июле 1990 г. (ИУС 5-81, 12-84, 11-90)